已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Microstructure and mechanical properties of TiC/Ti6Al4V nanocomposites fabricated by gas–liquid reaction laser powder bed fusion

材料科学 微观结构 复合材料 纳米复合材料 成核 碳化钛 碳化物 有机化学 化学
作者
Yong Yang,Jiyuan Zhang,Wen‐Hou Wei
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier BV]
卷期号:869: 144829-144829 被引量:17
标识
DOI:10.1016/j.msea.2023.144829
摘要

Herein, we report a novel method for in-situ synthesis of nanometer-scaled TiC-reinforced Ti6Al4V-matrix composites (TMCs) via laser powder bed fusion (LPBF). The formation mechanism can be summarized as in-situ additive manufacturing (AM) via a gas–liquid reaction. Here, gas means the laser-induced pyrolysis methane gas (CH4) generates gaseous carbon (C) atoms/ions and liquid means that the laser beam irradiates Ti6Al4V powder to create a Ti matrix melt pool. TiC, which is the reaction product of gaseous C atom/ion with liquid Ti atom, initially undergoes nucleation and growth, and subsequently precipitates from the Ti matrix melt pool during fast LPBF cooling process. Finally, the TiC-reinforced TMCs are fabricated via a layer-wise gas–liquid reaction. With this method, three nanocomposites (Sample 2, 3 and 7) fabricated in low CH4 concentration (9 vol% and 19 vol%) exhibited good dispersion, clean interface and strong interfacial bonding between the TiC reinforcement and Ti matrix. Thus, it achieved a good combination of simultaneously high strength and high plasticity. The effects of CH4 concentration, laser power and scanning speed on the microstructures and mechanical properties including microhardness, compression behaviors and wear resistance were systematically studied. And the strengthening and toughening mechanisms of the TMCs were elucidated. The proposed in-situ AM method via the gas–liquid reaction would carve a new path for manufacturing uniformly dispersed nano-phase reinforced composites with excellent mechanical properties and complex geometries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助否认冶游史采纳,获得10
1秒前
5秒前
Bown完成签到 ,获得积分10
5秒前
今后应助Caism采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
科研通AI2S应助称心的绿柏采纳,获得10
7秒前
123完成签到,获得积分10
7秒前
wp完成签到,获得积分10
8秒前
fy完成签到,获得积分10
10秒前
棋士发布了新的文献求助10
10秒前
11秒前
xl完成签到 ,获得积分10
12秒前
柊巳发布了新的文献求助10
13秒前
韩军军完成签到 ,获得积分10
14秒前
慕青应助西行龟采纳,获得10
14秒前
Unicorn完成签到,获得积分10
19秒前
Hale完成签到,获得积分0
19秒前
21秒前
JJ完成签到,获得积分10
21秒前
从容芮应助含糊的尔槐采纳,获得50
21秒前
夏宇完成签到,获得积分10
24秒前
25秒前
25秒前
失眠煎饼发布了新的文献求助10
25秒前
大气糖豆完成签到 ,获得积分10
26秒前
26秒前
ComeOn发布了新的文献求助10
30秒前
应万言完成签到,获得积分0
32秒前
鱼与木头发布了新的文献求助10
33秒前
共享精神应助KAKA采纳,获得10
33秒前
34秒前
好好看文献完成签到,获得积分10
35秒前
桐桐应助乐观静蕾采纳,获得10
40秒前
gougoudy完成签到,获得积分10
40秒前
41秒前
风清扬发布了新的文献求助30
43秒前
44秒前
ZHC发布了新的文献求助10
45秒前
大模型应助紧张的新烟采纳,获得10
45秒前
多情凤灵发布了新的文献求助10
45秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953277
求助须知:如何正确求助?哪些是违规求助? 3498630
关于积分的说明 11092586
捐赠科研通 3229194
什么是DOI,文献DOI怎么找? 1785223
邀请新用户注册赠送积分活动 869318
科研通“疑难数据库(出版商)”最低求助积分说明 801417