亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Validated Real-World Dataset for the Diagnosis of Multiclass Serous Effusion Cytology according to the International System and Ground-Truth Validation Data

医学 浆液性液体 细胞学 基本事实 渗出 病理 细胞病理学 放射科 人工智能 外科 计算机科学
作者
Esraa Abd-Almoniem,Nadia Abd-Alsabour,Samar S. M. Elsheikh,Rasha R Mostafa,Yasmine Fathy Elesawy
出处
期刊:Acta Cytologica [Karger Publishers]
卷期号:68 (2): 160-170
标识
DOI:10.1159/000538465
摘要

<b><i>Introduction:</i></b> The application of artificial intelligence (AI) algorithms in serous fluid cytology is lacking due to the deficiency in standardized publicly available datasets. Here, we develop a novel public serous effusion cytology dataset. Furthermore, we apply AI algorithms on it to test its diagnostic utility and safety in clinical practice. <b><i>Methods:</i></b> The work is divided into three phases. Phase 1 entails building the dataset based on the multitiered evidence-based classification system proposed by the International System (TIS) of serous fluid cytology along with ground-truth tissue diagnosis for malignancy. To ensure reliable results of future AI research on this dataset, we carefully consider all the steps of the preparation and staining from a real-world cytopathology perspective. In phase 2, we pay special consideration to the image acquisition pipeline to ensure image integrity. Then we utilize the power of transfer learning using the convolutional layers of the VGG16 deep learning model for feature extraction. Finally, in phase 3, we apply the random forest classifier on the constructed dataset. <b><i>Results:</i></b> The dataset comprises 3,731 images distributed among the four TIS diagnostic categories. The model achieves 74% accuracy in this multiclass classification problem. Using a one-versus-all classifier, the fallout rate for images that are misclassified as negative for malignancy despite being a higher risk diagnosis is 0.13. Most of these misclassified images (77%) belong to the atypia of undetermined significance category in concordance with real-life statistics. <b><i>Conclusion:</i></b> This is the first and largest publicly available serous fluid cytology dataset based on a standardized diagnostic system. It is also the first dataset to include various types of effusions and pericardial fluid specimens. In addition, it is the first dataset to include the diagnostically challenging atypical categories. AI algorithms applied on this novel dataset show reliable results that can be incorporated into actual clinical practice with minimal risk of missing a diagnosis of malignancy. This work provides a foundation for researchers to develop and test further AI algorithms for the diagnosis of serous effusions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Z趋势完成签到,获得积分10
刚刚
1秒前
2秒前
3秒前
dyp完成签到,获得积分10
4秒前
5秒前
赶紧毕业完成签到,获得积分10
6秒前
7秒前
8秒前
dyp发布了新的文献求助30
9秒前
赶紧毕业发布了新的文献求助10
9秒前
研友_VZG7GZ应助科研进化中采纳,获得10
11秒前
余一台发布了新的文献求助10
12秒前
旨酒欣欣给令宏的求助进行了留言
14秒前
15秒前
大模型应助科研通管家采纳,获得10
16秒前
冷艳玉米完成签到,获得积分10
21秒前
余一台完成签到,获得积分10
26秒前
yyyyyy完成签到,获得积分10
36秒前
缓慢采柳完成签到 ,获得积分10
40秒前
青阳完成签到,获得积分10
41秒前
乐乐应助Q123ba叭采纳,获得10
43秒前
49秒前
小二郎应助满意的世界采纳,获得10
54秒前
Q123ba叭发布了新的文献求助10
56秒前
小胡爱科研完成签到 ,获得积分10
58秒前
南北完成签到 ,获得积分10
58秒前
redamancy完成签到 ,获得积分10
59秒前
我是老大应助皮崇知采纳,获得10
1分钟前
Q123ba叭完成签到,获得积分10
1分钟前
傲娇书萱发布了新的文献求助10
1分钟前
1分钟前
1分钟前
皮崇知发布了新的文献求助10
1分钟前
1分钟前
完美世界应助向东东采纳,获得10
1分钟前
xona完成签到,获得积分10
1分钟前
善学以致用应助落后凝莲采纳,获得10
1分钟前
符聪完成签到 ,获得积分10
1分钟前
Luchy完成签到 ,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965562
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155315
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176