A Novel Validated Real-World Dataset for the Diagnosis of Multiclass Serous Effusion Cytology according to the International System and Ground-Truth Validation Data

医学 浆液性液体 细胞学 基本事实 渗出 病理 细胞病理学 放射科 人工智能 外科 计算机科学
作者
Esraa Abd-Almoniem,Nadia Abd-Alsabour,Samar S. M. Elsheikh,Rasha R Mostafa,Yasmine Fathy Elesawy
出处
期刊:Acta Cytologica [S. Karger AG]
卷期号:68 (2): 160-170
标识
DOI:10.1159/000538465
摘要

<b><i>Introduction:</i></b> The application of artificial intelligence (AI) algorithms in serous fluid cytology is lacking due to the deficiency in standardized publicly available datasets. Here, we develop a novel public serous effusion cytology dataset. Furthermore, we apply AI algorithms on it to test its diagnostic utility and safety in clinical practice. <b><i>Methods:</i></b> The work is divided into three phases. Phase 1 entails building the dataset based on the multitiered evidence-based classification system proposed by the International System (TIS) of serous fluid cytology along with ground-truth tissue diagnosis for malignancy. To ensure reliable results of future AI research on this dataset, we carefully consider all the steps of the preparation and staining from a real-world cytopathology perspective. In phase 2, we pay special consideration to the image acquisition pipeline to ensure image integrity. Then we utilize the power of transfer learning using the convolutional layers of the VGG16 deep learning model for feature extraction. Finally, in phase 3, we apply the random forest classifier on the constructed dataset. <b><i>Results:</i></b> The dataset comprises 3,731 images distributed among the four TIS diagnostic categories. The model achieves 74% accuracy in this multiclass classification problem. Using a one-versus-all classifier, the fallout rate for images that are misclassified as negative for malignancy despite being a higher risk diagnosis is 0.13. Most of these misclassified images (77%) belong to the atypia of undetermined significance category in concordance with real-life statistics. <b><i>Conclusion:</i></b> This is the first and largest publicly available serous fluid cytology dataset based on a standardized diagnostic system. It is also the first dataset to include various types of effusions and pericardial fluid specimens. In addition, it is the first dataset to include the diagnostically challenging atypical categories. AI algorithms applied on this novel dataset show reliable results that can be incorporated into actual clinical practice with minimal risk of missing a diagnosis of malignancy. This work provides a foundation for researchers to develop and test further AI algorithms for the diagnosis of serous effusions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助科研通管家采纳,获得10
刚刚
刚刚
丰知然应助科研通管家采纳,获得10
刚刚
丰知然应助科研通管家采纳,获得10
刚刚
半无狗狗发布了新的文献求助10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
刚刚
丰知然应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
丰知然应助科研通管家采纳,获得10
刚刚
丰知然应助科研通管家采纳,获得10
刚刚
丰知然应助科研通管家采纳,获得10
刚刚
乐乐应助yxx采纳,获得10
刚刚
刚刚
刚刚
丰知然应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
司徒文青应助科研通管家采纳,获得30
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
1秒前
乐观的醉香完成签到,获得积分10
1秒前
2秒前
火乐完成签到 ,获得积分10
2秒前
Somnolence咩完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
永刚完成签到,获得积分10
4秒前
5秒前
Sew东坡完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588775
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14788654
捐赠科研通 4626241
什么是DOI,文献DOI怎么找? 2531957
邀请新用户注册赠送积分活动 1500530
关于科研通互助平台的介绍 1468329