A Novel Validated Real-World Dataset for the Diagnosis of Multiclass Serous Effusion Cytology according to the International System and Ground-Truth Validation Data

医学 浆液性液体 细胞学 基本事实 渗出 病理 细胞病理学 放射科 人工智能 外科 计算机科学
作者
Esraa Abd-Almoniem,Nadia Abd-Alsabour,Samar S. M. Elsheikh,Rasha R Mostafa,Yasmine Fathy Elesawy
出处
期刊:Acta Cytologica [S. Karger AG]
卷期号:68 (2): 160-170
标识
DOI:10.1159/000538465
摘要

<b><i>Introduction:</i></b> The application of artificial intelligence (AI) algorithms in serous fluid cytology is lacking due to the deficiency in standardized publicly available datasets. Here, we develop a novel public serous effusion cytology dataset. Furthermore, we apply AI algorithms on it to test its diagnostic utility and safety in clinical practice. <b><i>Methods:</i></b> The work is divided into three phases. Phase 1 entails building the dataset based on the multitiered evidence-based classification system proposed by the International System (TIS) of serous fluid cytology along with ground-truth tissue diagnosis for malignancy. To ensure reliable results of future AI research on this dataset, we carefully consider all the steps of the preparation and staining from a real-world cytopathology perspective. In phase 2, we pay special consideration to the image acquisition pipeline to ensure image integrity. Then we utilize the power of transfer learning using the convolutional layers of the VGG16 deep learning model for feature extraction. Finally, in phase 3, we apply the random forest classifier on the constructed dataset. <b><i>Results:</i></b> The dataset comprises 3,731 images distributed among the four TIS diagnostic categories. The model achieves 74% accuracy in this multiclass classification problem. Using a one-versus-all classifier, the fallout rate for images that are misclassified as negative for malignancy despite being a higher risk diagnosis is 0.13. Most of these misclassified images (77%) belong to the atypia of undetermined significance category in concordance with real-life statistics. <b><i>Conclusion:</i></b> This is the first and largest publicly available serous fluid cytology dataset based on a standardized diagnostic system. It is also the first dataset to include various types of effusions and pericardial fluid specimens. In addition, it is the first dataset to include the diagnostically challenging atypical categories. AI algorithms applied on this novel dataset show reliable results that can be incorporated into actual clinical practice with minimal risk of missing a diagnosis of malignancy. This work provides a foundation for researchers to develop and test further AI algorithms for the diagnosis of serous effusions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zoey完成签到,获得积分10
2秒前
4秒前
迷路睫毛发布了新的文献求助30
5秒前
刘一完成签到 ,获得积分10
5秒前
司徒涟妖发布了新的文献求助50
6秒前
帅气之槐发布了新的文献求助10
6秒前
健健康康完成签到 ,获得积分10
6秒前
白宏宝发布了新的文献求助10
10秒前
皮皮发布了新的文献求助10
11秒前
12秒前
小怨种发布了新的文献求助10
12秒前
Flora完成签到,获得积分10
14秒前
16秒前
xs发布了新的文献求助10
17秒前
白宏宝完成签到,获得积分20
18秒前
18秒前
化龙完成签到,获得积分10
21秒前
甜甜圈完成签到,获得积分10
22秒前
CipherSage应助xs采纳,获得10
23秒前
顾矜应助白宏宝采纳,获得30
23秒前
24秒前
xin_you完成签到,获得积分10
26秒前
直率芷巧发布了新的文献求助100
28秒前
小怨种完成签到,获得积分10
28秒前
nyyer完成签到,获得积分10
30秒前
帅气之槐发布了新的文献求助10
30秒前
隐形曼青应助小白采纳,获得10
31秒前
刘老哥6完成签到,获得积分10
35秒前
zh应助无限毛豆采纳,获得10
35秒前
酷波er应助ShengzhangLiu采纳,获得10
36秒前
37秒前
vicever关注了科研通微信公众号
37秒前
小刘完成签到 ,获得积分10
39秒前
sally完成签到 ,获得积分10
39秒前
小枣完成签到 ,获得积分10
39秒前
小何医生完成签到,获得积分10
40秒前
42秒前
mjk2622完成签到,获得积分10
42秒前
Anan应助科研通管家采纳,获得20
42秒前
打打应助科研通管家采纳,获得10
42秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
临床微生物检验问与答 (第二版), 人民卫生出版社, 2014:146 500
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350975
求助须知:如何正确求助?哪些是违规求助? 2976530
关于积分的说明 8675444
捐赠科研通 2657683
什么是DOI,文献DOI怎么找? 1455204
科研通“疑难数据库(出版商)”最低求助积分说明 673739
邀请新用户注册赠送积分活动 664242