Search for eutectic high entropy alloys by integrating high-throughput CALPHAD, machine learning and experiments

共晶体系 材料科学 灰烬 高熵合金 吞吐量 工艺工程 冶金 合金 计算机科学 相图 相(物质) 工程类 操作系统 有机化学 化学 无线
作者
Yingzhi Zeng,Mengren Man,Chee Koon Ng,Zachary H. Aitken,Kewu Bai,Delvin Wuu,Jing Jun Lee,Si Rong Ng,Fengxia Wei,Pei Wang,Dennis Cheng Cheh Tan,Yong‐Wei Zhang
出处
期刊:Materials & Design [Elsevier]
卷期号:241: 112929-112929 被引量:7
标识
DOI:10.1016/j.matdes.2024.112929
摘要

We present a comprehensive study on the identification of eutectic high entropy alloys (EHEAs) through integration of CALculation of PHAse Diagrams (CALPHAD), machine learning (ML), and experimental data. By performing high-throughput CALPHAD calculations to obtain the temperature differences between liquidus and solidus phases (ΔT) and employing gradient descent optimization to identify local minima in ΔT surface, we obtained a reliable dataset for EHEAs across 5–6 component alloy families, which effectively addresses current limitations in both the quality and availability of EHEA data. In conjunction with literature-based experimental data, this dataset serves as the foundation for ML models trained with an XGBoost classifier. The physical descriptors with the most significant effects on the classification of eutectics and non-eutectics are identified. Our study reveals that configurational entropy alone yields a remarkable 98% classification accuracy, elucidating its dual role in phase stabilization and melting point depression. For the first time, an explicit phase selection rule to identify eutectics has been derived from an artificial neural network model, which facilitates efficiently screening EHEAs without resorting to CALPHAD nor ML models. This study presents a robust, data-driven strategy applicable not only to EHEAs but also to a broader range of alloy systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助kkkjjj采纳,获得10
1秒前
唐牛宝完成签到,获得积分10
1秒前
ADChem_JH发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
浮游应助FXY采纳,获得10
2秒前
科研通AI6应助沐沐采纳,获得10
4秒前
5秒前
万能图书馆应助选波采纳,获得10
5秒前
6秒前
8秒前
自由南珍应助孙朱珠采纳,获得10
8秒前
9秒前
9秒前
勤奋的绝义完成签到 ,获得积分10
9秒前
太少拿米应助Lny采纳,获得20
9秒前
11秒前
ha发布了新的文献求助10
11秒前
12秒前
zsy发布了新的文献求助10
13秒前
唐白云发布了新的文献求助10
13秒前
13秒前
13秒前
benny279发布了新的文献求助10
14秒前
yang完成签到,获得积分10
14秒前
kkkjjj完成签到,获得积分20
16秒前
欧皇完成签到,获得积分20
16秒前
17秒前
酷波er应助小康采纳,获得10
18秒前
18秒前
price发布了新的文献求助10
18秒前
香蕉诗蕊举报小蜜蜂求助涉嫌违规
18秒前
18秒前
18秒前
19秒前
19秒前
舒适千儿发布了新的文献求助10
22秒前
李爱国应助ongkianwhww采纳,获得10
22秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336