CTNet: Contrastive Transformer Network for Polyp Segmentation

模式识别(心理学) 计算机科学 伪装 变压器 分割 特征(语言学) 人工智能 计算机视觉 电压 语言学 哲学 物理 量子力学
作者
Bin Xiao,Jinwu Hu,Weisheng Li,Chi‐Man Pun,Xiuli Bi
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (9): 5040-5053 被引量:19
标识
DOI:10.1109/tcyb.2024.3368154
摘要

Segmenting polyps from colonoscopy images is very important in clinical practice since it provides valuable information for colorectal cancer. However, polyp segmentation remains a challenging task as polyps have camouflage properties and vary greatly in size. Although many polyp segmentation methods have been recently proposed and produced remarkable results, most of them cannot yield stable results due to the lack of features with distinguishing properties and those with high-level semantic details. Therefore, we proposed a novel polyp segmentation framework called contrastive Transformer network (CTNet), with three key components of contrastive Transformer backbone, self-multiscale interaction module (SMIM), and collection information module (CIM), which has excellent learning and generalization abilities. The long-range dependence and highly structured feature map space obtained by CTNet through contrastive Transformer can effectively localize polyps with camouflage properties. CTNet benefits from the multiscale information and high-resolution feature maps with high-level semantic obtained by SMIM and CIM, respectively, and thus can obtain accurate segmentation results for polyps of different sizes. Without bells and whistles, CTNet yields significant gains of 2.3%, 3.7%, 3.7%, 18.2%, and 10.1% over classical method PraNet on Kvasir-SEG, CVC-ClinicDB, Endoscene, ETIS-LaribPolypDB, and CVC-ColonDB respectively. In addition, CTNet has advantages in camouflaged object detection and defect detection. The code is available at https://github.com/Fhujinwu/CTNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
laola发布了新的文献求助10
刚刚
Mine发布了新的文献求助10
刚刚
柴yuki完成签到 ,获得积分10
1秒前
贪玩丸子完成签到,获得积分10
1秒前
狗窝里的猫yan完成签到,获得积分10
1秒前
2秒前
没有蛀牙完成签到,获得积分10
3秒前
3秒前
酶没美镁完成签到,获得积分10
4秒前
4秒前
Lwxbb完成签到,获得积分10
5秒前
科目三应助搬砖人采纳,获得200
5秒前
安然发布了新的文献求助10
5秒前
SweetyANN完成签到,获得积分10
6秒前
6秒前
勤劳溪灵完成签到,获得积分10
6秒前
6秒前
夏姬宁静发布了新的文献求助10
7秒前
情怀应助无所吊谓采纳,获得10
7秒前
Active完成签到,获得积分10
7秒前
scholars完成签到,获得积分10
8秒前
ohno耶耶耶发布了新的文献求助10
9秒前
SweetyANN发布了新的文献求助10
9秒前
9秒前
niceweiwei发布了新的文献求助10
10秒前
ZG发布了新的文献求助10
10秒前
10秒前
迷路安雁完成签到,获得积分10
11秒前
11秒前
yuery完成签到,获得积分10
11秒前
牛牛牛完成签到,获得积分10
11秒前
A1len完成签到,获得积分10
12秒前
爱写论文的小胡完成签到,获得积分10
12秒前
拉长的问晴完成签到,获得积分10
13秒前
Yukikig完成签到,获得积分10
13秒前
哈哈哈哈哈完成签到,获得积分10
13秒前
tofms完成签到,获得积分10
13秒前
没有蛀牙发布了新的文献求助10
13秒前
Starain完成签到,获得积分10
13秒前
WW完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874