CTNet: Contrastive Transformer Network for Polyp Segmentation

模式识别(心理学) 计算机科学 伪装 变压器 分割 特征(语言学) 人工智能 计算机视觉 电压 语言学 哲学 物理 量子力学
作者
Bin Xiao,Jinwu Hu,Weisheng Li,Chi‐Man Pun,Xiuli Bi
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:4
标识
DOI:10.1109/tcyb.2024.3368154
摘要

Segmenting polyps from colonoscopy images is very important in clinical practice since it provides valuable information for colorectal cancer. However, polyp segmentation remains a challenging task as polyps have camouflage properties and vary greatly in size. Although many polyp segmentation methods have been recently proposed and produced remarkable results, most of them cannot yield stable results due to the lack of features with distinguishing properties and those with high-level semantic details. Therefore, we proposed a novel polyp segmentation framework called contrastive Transformer network (CTNet), with three key components of contrastive Transformer backbone, self-multiscale interaction module (SMIM), and collection information module (CIM), which has excellent learning and generalization abilities. The long-range dependence and highly structured feature map space obtained by CTNet through contrastive Transformer can effectively localize polyps with camouflage properties. CTNet benefits from the multiscale information and high-resolution feature maps with high-level semantic obtained by SMIM and CIM, respectively, and thus can obtain accurate segmentation results for polyps of different sizes. Without bells and whistles, CTNet yields significant gains of 2.3%, 3.7%, 3.7%, 18.2%, and 10.1% over classical method PraNet on Kvasir-SEG, CVC-ClinicDB, Endoscene, ETIS-LaribPolypDB, and CVC-ColonDB respectively. In addition, CTNet has advantages in camouflaged object detection and defect detection. The code is available at https://github.com/Fhujinwu/CTNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
赵浩杰完成签到,获得积分10
2秒前
北笙完成签到 ,获得积分10
2秒前
王算法完成签到,获得积分10
6秒前
俊逸的咖啡完成签到,获得积分10
7秒前
13秒前
yolo完成签到,获得积分10
15秒前
ww发布了新的文献求助10
18秒前
fawr完成签到 ,获得积分10
20秒前
Star完成签到,获得积分10
22秒前
22秒前
自觉画板完成签到,获得积分10
24秒前
24秒前
马铃薯完成签到,获得积分10
27秒前
Herbs完成签到 ,获得积分10
29秒前
火鸡味锅巴完成签到,获得积分10
32秒前
32秒前
洪先生完成签到 ,获得积分10
35秒前
35秒前
Even9完成签到,获得积分10
36秒前
73Jennie123完成签到,获得积分10
36秒前
NexusExplorer应助科研通管家采纳,获得10
37秒前
天天快乐应助科研通管家采纳,获得10
37秒前
一一应助科研通管家采纳,获得20
37秒前
斯文败类应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
稳重的蜡烛完成签到,获得积分10
40秒前
木子川发布了新的文献求助30
40秒前
彭苗苗完成签到,获得积分10
40秒前
无敌大流流完成签到,获得积分10
40秒前
科目三应助prayme4采纳,获得10
41秒前
baby的跑男完成签到,获得积分10
50秒前
yaoyh_gc完成签到,获得积分10
53秒前
lcxszsd完成签到 ,获得积分10
56秒前
57秒前
yi蔚完成签到 ,获得积分10
59秒前
zyy_luck发布了新的文献求助10
1分钟前
朴素访琴完成签到 ,获得积分10
1分钟前
五十完成签到,获得积分10
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139720
求助须知:如何正确求助?哪些是违规求助? 2790643
关于积分的说明 7795972
捐赠科研通 2447082
什么是DOI,文献DOI怎么找? 1301563
科研通“疑难数据库(出版商)”最低求助积分说明 626300
版权声明 601176