CTNet: Contrastive Transformer Network for Polyp Segmentation

模式识别(心理学) 计算机科学 伪装 变压器 分割 特征(语言学) 人工智能 计算机视觉 电压 语言学 量子力学 物理 哲学
作者
Bin Xiao,Jinwu Hu,Weisheng Li,Chi‐Man Pun,Xiuli Bi
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (9): 5040-5053 被引量:63
标识
DOI:10.1109/tcyb.2024.3368154
摘要

Segmenting polyps from colonoscopy images is very important in clinical practice since it provides valuable information for colorectal cancer. However, polyp segmentation remains a challenging task as polyps have camouflage properties and vary greatly in size. Although many polyp segmentation methods have been recently proposed and produced remarkable results, most of them cannot yield stable results due to the lack of features with distinguishing properties and those with high-level semantic details. Therefore, we proposed a novel polyp segmentation framework called contrastive Transformer network (CTNet), with three key components of contrastive Transformer backbone, self-multiscale interaction module (SMIM), and collection information module (CIM), which has excellent learning and generalization abilities. The long-range dependence and highly structured feature map space obtained by CTNet through contrastive Transformer can effectively localize polyps with camouflage properties. CTNet benefits from the multiscale information and high-resolution feature maps with high-level semantic obtained by SMIM and CIM, respectively, and thus can obtain accurate segmentation results for polyps of different sizes. Without bells and whistles, CTNet yields significant gains of 2.3%, 3.7%, 3.7%, 18.2%, and 10.1% over classical method PraNet on Kvasir-SEG, CVC-ClinicDB, Endoscene, ETIS-LaribPolypDB, and CVC-ColonDB respectively. In addition, CTNet has advantages in camouflaged object detection and defect detection. The code is available at https://github.com/Fhujinwu/CTNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
niqiu完成签到 ,获得积分10
刚刚
1秒前
1秒前
xxfsx应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
1秒前
实验室应助科研通管家采纳,获得30
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
子车茗应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
2秒前
英姑应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
史前巨怪完成签到,获得积分10
3秒前
慕青应助mysci采纳,获得10
3秒前
cc发布了新的文献求助10
3秒前
董是鑫完成签到 ,获得积分10
3秒前
逃出生天发布了新的文献求助10
4秒前
4秒前
丘比特应助仅此而已采纳,获得10
4秒前
ddz发布了新的文献求助10
4秒前
4秒前
快乐芒果发布了新的文献求助10
4秒前
weiliu完成签到,获得积分10
4秒前
王一发布了新的文献求助10
5秒前
惊鸿一面发布了新的文献求助10
6秒前
zhang完成签到,获得积分10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710