Machine learning modeling of fluorescence spectral data for prediction of trace organic contaminant removal during UV/H2O2 treatment of wastewater

废水 光降解 生物系统 流出物 荧光 环境科学 降级(电信) 污水处理 环境化学 荧光光谱法 化学 环境工程 计算机科学 光催化 有机化学 催化作用 光学 物理 生物 电信
作者
Yi Yang,Chao Shan,Bingcai Pan
出处
期刊:Water Research [Elsevier]
卷期号:255: 121484-121484 被引量:30
标识
DOI:10.1016/j.watres.2024.121484
摘要

Dynamic feedback of the removal performance of trace organic contaminants (TrOCs) is essential towards economical advanced oxidation processes (AOPs), whereas the corresponding quick-response feedback methods have long been desired. Herein, machine learning (ML) multi-target regression random forest (MORF) models were developed based on the fluorescence spectra to predict the removal of TrOCs during UV/H2O2 treatment of municipal secondary effluent as a typical AOP. The predictive performance of the developed MORF model (R2 = 0.83-0.95) exhibited higher accuracy over the traditional linear regression models with R2 increased by ∼0.15. Furthermore, through feature importance analysis, the spectral regions of high importance were identified for different groups of TrOCs, thus enabling faster data acquisition due to remarkably reduced size of required fluorescence spectral scanning region. Specifically, the fluorescence regions Ex(235-275 nm)/Em(325-400 nm) and Ex(240-360 nm)/Em(325-450 nm) were found highly correlated with the removal of the TrOCs susceptible to both photodegradation and •OH degradation and those primarily subject to •OH degradation, respectively. In addition, the spectral regions of high importance were also individually identified for the investigated TrOCs during the AOP. Through providing an efficient ML-based feedback method to monitor TrOC removal during AOP, this study sheds light on the development of dynamic feedback-based strategies for precise and economical advanced treatment of wastewater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
杨亚轩发布了新的文献求助10
2秒前
jie完成签到,获得积分20
3秒前
3秒前
闪闪念文完成签到 ,获得积分10
3秒前
4秒前
han发布了新的文献求助10
5秒前
Akim应助肉肉采纳,获得10
6秒前
赘婿应助坚定海之采纳,获得10
7秒前
7秒前
DYZ发布了新的文献求助10
8秒前
8秒前
蓝林完成签到,获得积分20
9秒前
热心凝莲完成签到 ,获得积分10
10秒前
科研通AI6应助han采纳,获得10
10秒前
南非的猫发布了新的文献求助10
10秒前
11秒前
核桃应助典雅的问玉采纳,获得10
12秒前
12秒前
12秒前
长安发布了新的文献求助10
13秒前
Quellaxjy发布了新的文献求助30
13秒前
大模型应助Rili采纳,获得10
13秒前
14秒前
负责长颈鹿完成签到,获得积分20
14秒前
小灰灰完成签到 ,获得积分10
14秒前
幸福的善若完成签到,获得积分10
14秒前
cjz123发布了新的文献求助10
15秒前
科大第一深情完成签到,获得积分10
15秒前
15秒前
怪怪发布了新的文献求助10
17秒前
Cain发布了新的文献求助10
17秒前
xc完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
Hello应助Wang采纳,获得10
19秒前
19秒前
长安完成签到,获得积分10
20秒前
OhHH发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393870
求助须知:如何正确求助?哪些是违规求助? 4515281
关于积分的说明 14053296
捐赠科研通 4426429
什么是DOI,文献DOI怎么找? 2431383
邀请新用户注册赠送积分活动 1423533
关于科研通互助平台的介绍 1402529