Machine learning modeling of fluorescence spectral data for prediction of trace organic contaminant removal during UV/H2O2 treatment of wastewater

废水 光降解 生物系统 流出物 荧光 环境科学 降级(电信) 污水处理 环境化学 荧光光谱法 化学 环境工程 计算机科学 光催化 有机化学 催化作用 光学 生物 电信 物理
作者
Yi Yang,Chao Shan,Bingcai Pan
出处
期刊:Water Research [Elsevier]
卷期号:255: 121484-121484 被引量:38
标识
DOI:10.1016/j.watres.2024.121484
摘要

Dynamic feedback of the removal performance of trace organic contaminants (TrOCs) is essential towards economical advanced oxidation processes (AOPs), whereas the corresponding quick-response feedback methods have long been desired. Herein, machine learning (ML) multi-target regression random forest (MORF) models were developed based on the fluorescence spectra to predict the removal of TrOCs during UV/H2O2 treatment of municipal secondary effluent as a typical AOP. The predictive performance of the developed MORF model (R2 = 0.83-0.95) exhibited higher accuracy over the traditional linear regression models with R2 increased by ∼0.15. Furthermore, through feature importance analysis, the spectral regions of high importance were identified for different groups of TrOCs, thus enabling faster data acquisition due to remarkably reduced size of required fluorescence spectral scanning region. Specifically, the fluorescence regions Ex(235-275 nm)/Em(325-400 nm) and Ex(240-360 nm)/Em(325-450 nm) were found highly correlated with the removal of the TrOCs susceptible to both photodegradation and •OH degradation and those primarily subject to •OH degradation, respectively. In addition, the spectral regions of high importance were also individually identified for the investigated TrOCs during the AOP. Through providing an efficient ML-based feedback method to monitor TrOC removal during AOP, this study sheds light on the development of dynamic feedback-based strategies for precise and economical advanced treatment of wastewater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眯眯眼的裙子完成签到,获得积分10
1秒前
Lucia完成签到 ,获得积分10
1秒前
大盆完成签到,获得积分10
1秒前
开朗醉波发布了新的文献求助10
2秒前
2秒前
泡菜鱼oo完成签到,获得积分20
3秒前
3秒前
Muddle完成签到,获得积分10
3秒前
wacfpp完成签到,获得积分10
3秒前
4秒前
cindy发布了新的文献求助10
4秒前
1234发布了新的文献求助10
4秒前
疯大仙外向太清完成签到,获得积分10
4秒前
浮泷完成签到,获得积分10
6秒前
6秒前
英姑应助赵小美采纳,获得10
6秒前
6秒前
Muddle发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
柠檬不萌完成签到,获得积分10
7秒前
D追完成签到,获得积分20
7秒前
鱼王木木完成签到,获得积分10
8秒前
8秒前
完美世界应助519采纳,获得10
8秒前
angelinazh发布了新的文献求助10
9秒前
9秒前
9秒前
苍竹士子完成签到,获得积分20
9秒前
10秒前
10秒前
11秒前
12秒前
12秒前
苍竹士子发布了新的文献求助10
12秒前
12秒前
13秒前
Jasper应助粗犷的路采纳,获得10
13秒前
13秒前
Ava应助欢呼的荆采纳,获得10
13秒前
半月完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933