Machine learning modeling of fluorescence spectral data for prediction of trace organic contaminant removal during UV/H2O2 treatment of wastewater

废水 光降解 生物系统 流出物 荧光 环境科学 降级(电信) 污水处理 环境化学 荧光光谱法 化学 环境工程 计算机科学 光催化 有机化学 催化作用 光学 物理 生物 电信
作者
Yi Yang,Chao Shan,Bingcai Pan
出处
期刊:Water Research [Elsevier]
卷期号:255: 121484-121484 被引量:11
标识
DOI:10.1016/j.watres.2024.121484
摘要

Dynamic feedback of the removal performance of trace organic contaminants (TrOCs) is essential towards economical advanced oxidation processes (AOPs), whereas the corresponding quick-response feedback methods have long been desired. Herein, machine learning (ML) multi-target regression random forest (MORF) models were developed based on the fluorescence spectra to predict the removal of TrOCs during UV/H2O2 treatment of municipal secondary effluent as a typical AOP. The predictive performance of the developed MORF model (R2 = 0.83-0.95) exhibited higher accuracy over the traditional linear regression models with R2 increased by ∼0.15. Furthermore, through feature importance analysis, the spectral regions of high importance were identified for different groups of TrOCs, thus enabling faster data acquisition due to remarkably reduced size of required fluorescence spectral scanning region. Specifically, the fluorescence regions Ex(235-275 nm)/Em(325-400 nm) and Ex(240-360 nm)/Em(325-450 nm) were found highly correlated with the removal of the TrOCs susceptible to both photodegradation and •OH degradation and those primarily subject to •OH degradation, respectively. In addition, the spectral regions of high importance were also individually identified for the investigated TrOCs during the AOP. Through providing an efficient ML-based feedback method to monitor TrOC removal during AOP, this study sheds light on the development of dynamic feedback-based strategies for precise and economical advanced treatment of wastewater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
George完成签到,获得积分10
1秒前
WDK完成签到,获得积分10
1秒前
情怀应助敏感的芷采纳,获得10
1秒前
Orange应助方勇飞采纳,获得10
2秒前
FashionBoy应助烂漫驳采纳,获得10
2秒前
3秒前
4秒前
大鱼完成签到,获得积分10
4秒前
4秒前
lu完成签到,获得积分10
5秒前
Murphy完成签到 ,获得积分10
5秒前
斯文败类应助大方嵩采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得30
6秒前
hh应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得20
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
sutharsons应助科研通管家采纳,获得200
7秒前
orixero应助科研通管家采纳,获得10
7秒前
许多知识发布了新的文献求助10
8秒前
FashionBoy应助su采纳,获得10
8秒前
8秒前
运敬完成签到 ,获得积分10
9秒前
XSB完成签到,获得积分10
9秒前
青草蛋糕完成签到 ,获得积分10
9秒前
怡然剑成完成签到,获得积分10
9秒前
9秒前
liyuchen发布了新的文献求助10
10秒前
ipeakkka完成签到,获得积分20
12秒前
马克发布了新的文献求助10
12秒前
赵OO完成签到,获得积分10
12秒前
Yon完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824