Machine learning modeling of fluorescence spectral data for prediction of trace organic contaminant removal during UV/H2O2 treatment of wastewater

废水 光降解 生物系统 流出物 荧光 环境科学 降级(电信) 污水处理 环境化学 荧光光谱法 化学 环境工程 计算机科学 光催化 有机化学 催化作用 光学 生物 电信 物理
作者
Yi Yang,Chao Shan,Bingcai Pan
出处
期刊:Water Research [Elsevier BV]
卷期号:255: 121484-121484 被引量:14
标识
DOI:10.1016/j.watres.2024.121484
摘要

Dynamic feedback of the removal performance of trace organic contaminants (TrOCs) is essential towards economical advanced oxidation processes (AOPs), whereas the corresponding quick-response feedback methods have long been desired. Herein, machine learning (ML) multi-target regression random forest (MORF) models were developed based on the fluorescence spectra to predict the removal of TrOCs during UV/H2O2 treatment of municipal secondary effluent as a typical AOP. The predictive performance of the developed MORF model (R2 = 0.83-0.95) exhibited higher accuracy over the traditional linear regression models with R2 increased by ∼0.15. Furthermore, through feature importance analysis, the spectral regions of high importance were identified for different groups of TrOCs, thus enabling faster data acquisition due to remarkably reduced size of required fluorescence spectral scanning region. Specifically, the fluorescence regions Ex(235-275 nm)/Em(325-400 nm) and Ex(240-360 nm)/Em(325-450 nm) were found highly correlated with the removal of the TrOCs susceptible to both photodegradation and •OH degradation and those primarily subject to •OH degradation, respectively. In addition, the spectral regions of high importance were also individually identified for the investigated TrOCs during the AOP. Through providing an efficient ML-based feedback method to monitor TrOC removal during AOP, this study sheds light on the development of dynamic feedback-based strategies for precise and economical advanced treatment of wastewater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_ZGR0jn完成签到,获得积分10
刚刚
LCX完成签到,获得积分10
1秒前
甜美的月饼完成签到,获得积分10
1秒前
boom完成签到,获得积分10
1秒前
阿罗发布了新的文献求助10
2秒前
学不懂数学应助1101592875采纳,获得10
3秒前
Laisy完成签到,获得积分10
3秒前
3秒前
靓丽安珊发布了新的文献求助10
4秒前
expuery完成签到,获得积分10
4秒前
江鹿柒柒完成签到,获得积分10
4秒前
绿麦盲区完成签到,获得积分10
4秒前
华仔应助zhu采纳,获得10
4秒前
paopao完成签到 ,获得积分10
5秒前
lorentzh发布了新的文献求助10
5秒前
5秒前
alice完成签到,获得积分10
6秒前
zz完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
Hello~完成签到,获得积分10
7秒前
8秒前
优雅的老姆完成签到,获得积分10
8秒前
荔枝凉完成签到,获得积分10
8秒前
9秒前
阳光念桃完成签到,获得积分10
9秒前
娇气的白卉完成签到,获得积分10
9秒前
打野完成签到,获得积分10
9秒前
果壳茉莉拌沙拉完成签到,获得积分10
11秒前
11秒前
12秒前
EthanChan完成签到,获得积分10
13秒前
可靠笑翠发布了新的文献求助10
13秒前
爆米花应助boom采纳,获得10
13秒前
莫道雪落奈何完成签到,获得积分10
13秒前
helloworld完成签到,获得积分10
13秒前
苹果孤容发布了新的文献求助10
14秒前
xshzhou完成签到,获得积分10
14秒前
小二郎应助杰小瑞采纳,获得30
14秒前
pl656完成签到,获得积分10
15秒前
自由的雪一完成签到,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259