亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning modeling of fluorescence spectral data for prediction of trace organic contaminant removal during UV/H2O2 treatment of wastewater

废水 光降解 生物系统 流出物 荧光 环境科学 降级(电信) 污水处理 环境化学 荧光光谱法 化学 环境工程 计算机科学 光催化 有机化学 催化作用 光学 物理 生物 电信
作者
Yi Yang,Chao Shan,Bingcai Pan
出处
期刊:Water Research [Elsevier]
卷期号:255: 121484-121484 被引量:30
标识
DOI:10.1016/j.watres.2024.121484
摘要

Dynamic feedback of the removal performance of trace organic contaminants (TrOCs) is essential towards economical advanced oxidation processes (AOPs), whereas the corresponding quick-response feedback methods have long been desired. Herein, machine learning (ML) multi-target regression random forest (MORF) models were developed based on the fluorescence spectra to predict the removal of TrOCs during UV/H2O2 treatment of municipal secondary effluent as a typical AOP. The predictive performance of the developed MORF model (R2 = 0.83-0.95) exhibited higher accuracy over the traditional linear regression models with R2 increased by ∼0.15. Furthermore, through feature importance analysis, the spectral regions of high importance were identified for different groups of TrOCs, thus enabling faster data acquisition due to remarkably reduced size of required fluorescence spectral scanning region. Specifically, the fluorescence regions Ex(235-275 nm)/Em(325-400 nm) and Ex(240-360 nm)/Em(325-450 nm) were found highly correlated with the removal of the TrOCs susceptible to both photodegradation and •OH degradation and those primarily subject to •OH degradation, respectively. In addition, the spectral regions of high importance were also individually identified for the investigated TrOCs during the AOP. Through providing an efficient ML-based feedback method to monitor TrOC removal during AOP, this study sheds light on the development of dynamic feedback-based strategies for precise and economical advanced treatment of wastewater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悠树里完成签到,获得积分10
1秒前
shhoing应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助Li采纳,获得10
14秒前
22秒前
26秒前
30秒前
49秒前
小强呐完成签到 ,获得积分10
51秒前
啥时候吃火锅完成签到 ,获得积分0
1分钟前
天天快乐应助guan采纳,获得10
1分钟前
科研通AI2S应助Li采纳,获得10
1分钟前
呆萌念云完成签到 ,获得积分10
1分钟前
小乐完成签到 ,获得积分10
1分钟前
minnie完成签到 ,获得积分10
1分钟前
1分钟前
renjijiefuli应助叶子采纳,获得20
1分钟前
科研通AI2S应助Li采纳,获得10
1分钟前
1分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
ceeray23发布了新的文献求助20
2分钟前
微风打了烊完成签到 ,获得积分10
2分钟前
威武灵阳完成签到,获得积分10
2分钟前
科研通AI6应助Li采纳,获得10
2分钟前
2分钟前
绝活中投完成签到 ,获得积分10
3分钟前
Kinkrit完成签到 ,获得积分10
3分钟前
kaka完成签到 ,获得积分10
3分钟前
huenguyenvan完成签到,获得积分10
3分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
Perry完成签到,获得积分0
4分钟前
深情安青应助ceeray23采纳,获得20
4分钟前
4分钟前
4分钟前
ceeray23发布了新的文献求助20
4分钟前
勤恳冰淇淋完成签到 ,获得积分10
4分钟前
maplesirup发布了新的文献求助10
4分钟前
4分钟前
优秀棒棒糖完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558483
求助须知:如何正确求助?哪些是违规求助? 4643554
关于积分的说明 14671177
捐赠科研通 4584850
什么是DOI,文献DOI怎么找? 2515191
邀请新用户注册赠送积分活动 1489272
关于科研通互助平台的介绍 1459883