拓扑绝缘体
凝聚态物理
铁磁性
范德瓦尔斯力
异质结
绝缘体(电)
材料科学
自旋(空气动力学)
扭矩
物理
拓扑(电路)
量子力学
光电子学
电气工程
热力学
工程类
分子
作者
Gyu Seung Choi,Sun-Gyu Park,Eun‐Su An,Juhong Bae,Inseob Shin,Beom Tak Kang,Choongjae Won,Sang‐Wook Cheong,Hyun‐Woo Lee,Gil‐Ho Lee,Won Joon Cho,Jun Sung Kim
标识
DOI:10.1002/advs.202400893
摘要
Abstract All‐Van der Waals (vdW)‐material‐based heterostructures with atomically sharp interfaces offer a versatile platform for high‐performing spintronic functionalities at room temperature. One of the key components is vdW topological insulators (TIs), which can produce a strong spin‐orbit‐torque (SOT) through the spin‐momentum locking of their topological surface state (TSS). However, the relatively low conductance of the TSS introduces a current leakage problem through the bulk states of the TI or the adjacent ferromagnetic metal layers, reducing the interfacial charge‐to‐spin conversion efficiency ( q ICS ). Here, a vdW heterostructure is used consisting of atomically‐thin layers of a bulk‐insulating TI Sn‐doped Bi 1.1 Sb 0.9 Te 2 S 1 and a room‐temperature ferromagnet Fe 3 GaTe 2, to enhance the relative current ratio on the TSS up to ≈20%. The resulting q ICS reaches ≈1.65 nm −1 and the critical current density J c ≈0.9 × 10 6 Acm −2 at 300 K, surpassing the performance of TI‐based and heavy‐metal‐based SOT devices. These findings demonstrate that an all‐vdW heterostructure with thickness optimization offers a promising platform for efficient current‐controlled magnetization switching at room temperature.
科研通智能强力驱动
Strongly Powered by AbleSci AI