聚类分析
拓扑(电路)
计算机科学
订单(交换)
数学
统计物理学
人工智能
物理
组合数学
业务
财务
作者
Jiaxuan Xu,Taiyong Li,Lei Duan
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence
[Association for the Advancement of Artificial Intelligence (AAAI)]
日期:2024-03-24
卷期号:38 (14): 16184-16192
被引量:1
标识
DOI:10.1609/aaai.v38i14.29552
摘要
Ensemble clustering learns more accurate consensus results from a set of weak base clustering results. This technique is more challenging than other clustering algorithms due to the base clustering result set's randomness and the inaccessibility of data features. Existing ensemble clustering methods rely on the Co-association (CA) matrix quality but lack the capability to handle missing connections in base clustering. Inspired by the neighborhood high-order and topological similarity theories, this paper proposes a topological ensemble model based on high-order information. Specifically, this paper compensates for missing connections by mining neighborhood high-order connection information in the CA matrix and learning optimal connections with adaptive weights. Afterward, the learned excellent connections are embedded into topology learning to capture the topology of the base clustering. Finally, we incorporate adaptive high-order connection representation and topology learning into a unified learning framework. To our knowledge, this is the first ensemble clustering work based on topological similarity and high-order connectivity relations. Extensive experiments on multiple datasets demonstrate the effectiveness of the proposed method. The source code of the proposed approach is available at https://github.com/ltyong/awec.
科研通智能强力驱动
Strongly Powered by AbleSci AI