Enhancing Ensemble Clustering with Adaptive High-Order Topological Weights

聚类分析 拓扑(电路) 计算机科学 订单(交换) 数学 统计物理学 人工智能 物理 组合数学 业务 财务
作者
Jiaxuan Xu,Taiyong Li,Lei Duan
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (14): 16184-16192 被引量:1
标识
DOI:10.1609/aaai.v38i14.29552
摘要

Ensemble clustering learns more accurate consensus results from a set of weak base clustering results. This technique is more challenging than other clustering algorithms due to the base clustering result set's randomness and the inaccessibility of data features. Existing ensemble clustering methods rely on the Co-association (CA) matrix quality but lack the capability to handle missing connections in base clustering. Inspired by the neighborhood high-order and topological similarity theories, this paper proposes a topological ensemble model based on high-order information. Specifically, this paper compensates for missing connections by mining neighborhood high-order connection information in the CA matrix and learning optimal connections with adaptive weights. Afterward, the learned excellent connections are embedded into topology learning to capture the topology of the base clustering. Finally, we incorporate adaptive high-order connection representation and topology learning into a unified learning framework. To our knowledge, this is the first ensemble clustering work based on topological similarity and high-order connectivity relations. Extensive experiments on multiple datasets demonstrate the effectiveness of the proposed method. The source code of the proposed approach is available at https://github.com/ltyong/awec.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛毛发布了新的文献求助10
刚刚
1秒前
2秒前
zcg完成签到 ,获得积分10
2秒前
YYYCCCCC完成签到,获得积分10
3秒前
3秒前
ZDY完成签到,获得积分10
6秒前
64658应助qinghong采纳,获得10
7秒前
64658应助qinghong采纳,获得10
7秒前
下雨发布了新的文献求助10
8秒前
9秒前
毛毛完成签到,获得积分10
9秒前
科研通AI2S应助fairy采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
勤恳完成签到,获得积分10
11秒前
12秒前
12秒前
Vyasa发布了新的文献求助10
16秒前
ballball233完成签到 ,获得积分10
17秒前
17秒前
AX完成签到,获得积分10
17秒前
fairy完成签到,获得积分10
18秒前
英姑应助忧郁的平安采纳,获得10
18秒前
优雅含莲完成签到 ,获得积分10
19秒前
pi完成签到 ,获得积分10
23秒前
23秒前
Oak完成签到 ,获得积分10
24秒前
稳重火龙果完成签到,获得积分20
24秒前
WTaMi完成签到 ,获得积分10
24秒前
25秒前
車侖完成签到 ,获得积分10
25秒前
26秒前
古月完成签到 ,获得积分10
27秒前
fairy发布了新的文献求助10
27秒前
xdy完成签到 ,获得积分10
29秒前
洁净灭男完成签到,获得积分10
30秒前
balko完成签到,获得积分10
30秒前
坐下喝茶完成签到 ,获得积分10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961032
求助须知:如何正确求助?哪些是违规求助? 3507273
关于积分的说明 11135142
捐赠科研通 3239686
什么是DOI,文献DOI怎么找? 1790338
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150