Dual-Channel Learning Framework for Drug-Drug Interaction Prediction via Relation-Aware Heterogeneous Graph Transformer

药品 计算机科学 变压器 图形 人工智能 机器学习 理论计算机科学 药理学 医学 工程类 电压 电气工程
作者
Xiao-Rui Su,Pengwei Hu,Zhu‐Hong You,Philip S. Yu,Lun Hu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (1): 249-256
标识
DOI:10.1609/aaai.v38i1.27777
摘要

Identifying novel drug-drug interactions (DDIs) is a crucial task in pharmacology, as the interference between pharmacological substances can pose serious medical risks. In recent years, several network-based techniques have emerged for predicting DDIs. However, they primarily focus on local structures within DDI-related networks, often overlooking the significance of indirect connections between pairwise drug nodes from a global perspective. Additionally, effectively handling heterogeneous information present in both biomedical knowledge graphs and drug molecular graphs remains a challenge for improved performance of DDI prediction. To address these limitations, we propose a Transformer-based relatIon-aware Graph rEpresentation leaRning framework (TIGER) for DDI prediction. TIGER leverages the Transformer architecture to effectively exploit the structure of heterogeneous graph, which allows it direct learning of long dependencies and high-order structures. Furthermore, TIGER incorporates a relation-aware self-attention mechanism, capturing a diverse range of semantic relations that exist between pairs of nodes in heterogeneous graph. In addition to these advancements, TIGER enhances predictive accuracy by modeling DDI prediction task using a dual-channel network, where drug molecular graph and biomedical knowledge graph are fed into two respective channels. By incorporating embeddings obtained at graph and node levels, TIGER can benefit from structural properties of drugs as well as rich contextual information provided by biomedical knowledge graph. Extensive experiments conducted on three real-world datasets demonstrate the effectiveness of TIGER in DDI prediction. Furthermore, case studies highlight its ability to provide a deeper understanding of underlying mechanisms of DDIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
容珏完成签到,获得积分10
1秒前
那时年少完成签到,获得积分10
2秒前
机灵石头完成签到,获得积分10
3秒前
菲菲发布了新的文献求助10
5秒前
夜话风陵杜完成签到 ,获得积分0
7秒前
fiona完成签到,获得积分10
12秒前
体贴的叛逆者完成签到,获得积分10
19秒前
20秒前
社会主义接班人完成签到 ,获得积分10
21秒前
福娃完成签到,获得积分10
22秒前
King完成签到,获得积分10
22秒前
fffff完成签到,获得积分10
23秒前
CDI和LIB完成签到,获得积分10
24秒前
外向一一完成签到 ,获得积分10
24秒前
Daniel发布了新的文献求助20
24秒前
墨丿筠发布了新的文献求助10
26秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
打打应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
萧然完成签到,获得积分10
31秒前
Daniel完成签到,获得积分20
31秒前
小雅完成签到 ,获得积分10
33秒前
jialin完成签到 ,获得积分10
35秒前
九九完成签到 ,获得积分10
39秒前
夜白完成签到,获得积分0
39秒前
菲菲完成签到,获得积分10
40秒前
紫罗兰花海完成签到 ,获得积分10
44秒前
丁逍遥完成签到 ,获得积分10
44秒前
张张张xxx完成签到,获得积分10
46秒前
汉堡包应助墨丿筠采纳,获得10
50秒前
TiAmo完成签到 ,获得积分10
51秒前
xhp完成签到,获得积分10
57秒前
墨丿筠完成签到,获得积分10
57秒前
世上僅有的榮光之路完成签到,获得积分10
1分钟前
聂珩发布了新的文献求助10
1分钟前
友好盼波完成签到,获得积分10
1分钟前
山雀完成签到,获得积分10
1分钟前
务实的胡萝卜完成签到 ,获得积分10
1分钟前
铜豌豆完成签到 ,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314458
求助须知:如何正确求助?哪些是违规求助? 2946678
关于积分的说明 8531363
捐赠科研通 2622475
什么是DOI,文献DOI怎么找? 1434585
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650890