Dual-Channel Learning Framework for Drug-Drug Interaction Prediction via Relation-Aware Heterogeneous Graph Transformer

药品 计算机科学 变压器 图形 人工智能 机器学习 理论计算机科学 药理学 医学 工程类 电压 电气工程
作者
Xiaorui Su,Pengwei Hu,Zhu‐Hong You,Philip S. Yu,Lun Hu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (1): 249-256 被引量:14
标识
DOI:10.1609/aaai.v38i1.27777
摘要

Identifying novel drug-drug interactions (DDIs) is a crucial task in pharmacology, as the interference between pharmacological substances can pose serious medical risks. In recent years, several network-based techniques have emerged for predicting DDIs. However, they primarily focus on local structures within DDI-related networks, often overlooking the significance of indirect connections between pairwise drug nodes from a global perspective. Additionally, effectively handling heterogeneous information present in both biomedical knowledge graphs and drug molecular graphs remains a challenge for improved performance of DDI prediction. To address these limitations, we propose a Transformer-based relatIon-aware Graph rEpresentation leaRning framework (TIGER) for DDI prediction. TIGER leverages the Transformer architecture to effectively exploit the structure of heterogeneous graph, which allows it direct learning of long dependencies and high-order structures. Furthermore, TIGER incorporates a relation-aware self-attention mechanism, capturing a diverse range of semantic relations that exist between pairs of nodes in heterogeneous graph. In addition to these advancements, TIGER enhances predictive accuracy by modeling DDI prediction task using a dual-channel network, where drug molecular graph and biomedical knowledge graph are fed into two respective channels. By incorporating embeddings obtained at graph and node levels, TIGER can benefit from structural properties of drugs as well as rich contextual information provided by biomedical knowledge graph. Extensive experiments conducted on three real-world datasets demonstrate the effectiveness of TIGER in DDI prediction. Furthermore, case studies highlight its ability to provide a deeper understanding of underlying mechanisms of DDIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gttlyb完成签到,获得积分10
刚刚
中华有为完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
搞怪南烟发布了新的文献求助30
刚刚
仔仔发布了新的文献求助10
刚刚
刚刚
Jasper应助香蕉梨愁采纳,获得10
1秒前
无情干饭崽完成签到,获得积分10
1秒前
慕青应助笨笨采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助20
2秒前
852应助傲慢与偏见zz采纳,获得10
2秒前
学姐完成签到,获得积分10
2秒前
2秒前
3秒前
刘培培发布了新的文献求助10
3秒前
势不可挡发布了新的文献求助10
3秒前
1111应助zfm采纳,获得10
3秒前
3秒前
3秒前
领导范儿应助小皮艇采纳,获得10
4秒前
陌上花开完成签到,获得积分0
4秒前
4秒前
5秒前
yellow发布了新的文献求助10
5秒前
妮妮发布了新的文献求助10
5秒前
SciGPT应助李欣聪采纳,获得10
5秒前
Alily完成签到,获得积分10
5秒前
6秒前
6秒前
可爱的函函应助斌城采纳,获得10
6秒前
6秒前
7秒前
靓丽幻梅发布了新的文献求助10
7秒前
dalin发布了新的文献求助100
7秒前
孟龙威发布了新的文献求助10
7秒前
隐形曼青应助虚幻的青槐采纳,获得10
7秒前
王羲之发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577004
求助须知:如何正确求助?哪些是违规求助? 3996170
关于积分的说明 12371644
捐赠科研通 3670203
什么是DOI,文献DOI怎么找? 2022678
邀请新用户注册赠送积分活动 1056753
科研通“疑难数据库(出版商)”最低求助积分说明 943949