Dual-Channel Learning Framework for Drug-Drug Interaction Prediction via Relation-Aware Heterogeneous Graph Transformer

药品 计算机科学 变压器 图形 人工智能 机器学习 理论计算机科学 药理学 医学 工程类 电压 电气工程
作者
Xiao-Rui Su,Pengwei Hu,Zhu‐Hong You,Philip S. Yu,Lun Hu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (1): 249-256
标识
DOI:10.1609/aaai.v38i1.27777
摘要

Identifying novel drug-drug interactions (DDIs) is a crucial task in pharmacology, as the interference between pharmacological substances can pose serious medical risks. In recent years, several network-based techniques have emerged for predicting DDIs. However, they primarily focus on local structures within DDI-related networks, often overlooking the significance of indirect connections between pairwise drug nodes from a global perspective. Additionally, effectively handling heterogeneous information present in both biomedical knowledge graphs and drug molecular graphs remains a challenge for improved performance of DDI prediction. To address these limitations, we propose a Transformer-based relatIon-aware Graph rEpresentation leaRning framework (TIGER) for DDI prediction. TIGER leverages the Transformer architecture to effectively exploit the structure of heterogeneous graph, which allows it direct learning of long dependencies and high-order structures. Furthermore, TIGER incorporates a relation-aware self-attention mechanism, capturing a diverse range of semantic relations that exist between pairs of nodes in heterogeneous graph. In addition to these advancements, TIGER enhances predictive accuracy by modeling DDI prediction task using a dual-channel network, where drug molecular graph and biomedical knowledge graph are fed into two respective channels. By incorporating embeddings obtained at graph and node levels, TIGER can benefit from structural properties of drugs as well as rich contextual information provided by biomedical knowledge graph. Extensive experiments conducted on three real-world datasets demonstrate the effectiveness of TIGER in DDI prediction. Furthermore, case studies highlight its ability to provide a deeper understanding of underlying mechanisms of DDIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Trevor2021完成签到,获得积分10
1秒前
熊二发布了新的文献求助10
2秒前
SYLH应助科研小趴菜采纳,获得20
4秒前
泡泡鱼完成签到 ,获得积分10
4秒前
pluvia完成签到,获得积分10
5秒前
英俊的铭应助hahhhah采纳,获得10
5秒前
Trevor2021发布了新的文献求助10
6秒前
共享精神应助RONG采纳,获得10
8秒前
8秒前
9秒前
青山落日秋月春风完成签到,获得积分10
9秒前
JamesPei应助保持微笑采纳,获得10
10秒前
CLMY发布了新的文献求助10
10秒前
10秒前
酸奶山茶柚完成签到,获得积分10
11秒前
11秒前
谦让寻绿发布了新的文献求助10
11秒前
yzx发布了新的文献求助10
12秒前
万能图书馆应助今今采纳,获得10
14秒前
Ava应助涂惠芳采纳,获得10
16秒前
16秒前
轻松小之发布了新的文献求助10
16秒前
17秒前
科研小趴菜完成签到,获得积分20
17秒前
小甘看世界完成签到,获得积分0
17秒前
鱼的宇宙发布了新的文献求助10
18秒前
乐乐应助科研怪人采纳,获得10
18秒前
19秒前
勤劳的雨文完成签到,获得积分10
20秒前
wrr完成签到,获得积分10
20秒前
苹果发夹完成签到,获得积分10
20秒前
烟花应助谦让寻绿采纳,获得10
22秒前
Elaine发布了新的文献求助10
22秒前
Doct发布了新的文献求助10
23秒前
保持微笑发布了新的文献求助10
23秒前
24秒前
哆小咪完成签到 ,获得积分10
25秒前
nylon发布了新的文献求助10
25秒前
26秒前
yuanling完成签到 ,获得积分10
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980027
求助须知:如何正确求助?哪些是违规求助? 3524131
关于积分的说明 11219994
捐赠科研通 3261576
什么是DOI,文献DOI怎么找? 1800726
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232