Reading Users' Minds from What They Say: An Investigation into LLM-based Empathic Mental Inference

推论 阅读(过程) 心理意象 心理模型 心理学 认知心理学 计算机科学 认知科学 人工智能 语言学 哲学 认知 神经科学
作者
Qihao Zhu,Leah Chong,Maria C. Yang,Jianxi Luo
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2403.13301
摘要

In human-centered design, developing a comprehensive and in-depth understanding of user experiences, i.e., empathic understanding, is paramount for designing products that truly meet human needs. Nevertheless, accurately comprehending the real underlying mental states of a large human population remains a significant challenge today. This difficulty mainly arises from the trade-off between depth and scale of user experience research: gaining in-depth insights from a small group of users does not easily scale to a larger population, and vice versa. This paper investigates the use of Large Language Models (LLMs) for performing mental inference tasks, specifically inferring users' underlying goals and fundamental psychological needs (FPNs). Baseline and benchmark datasets were collected from human users and designers to develop an empathic accuracy metric for measuring the mental inference performance of LLMs. The empathic accuracy of inferring goals and FPNs of different LLMs with varied zero-shot prompt engineering techniques are experimented against that of human designers. Experimental results suggest that LLMs can infer and understand the underlying goals and FPNs of users with performance comparable to that of human designers, suggesting a promising avenue for enhancing the scalability of empathic design approaches through the integration of advanced artificial intelligence technologies. This work has the potential to significantly augment the toolkit available to designers during human-centered design, enabling the development of both large-scale and in-depth understanding of users' experiences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助慢慢采纳,获得10
刚刚
打打应助元煜祺采纳,获得10
1秒前
传奇3应助千纸鹤采纳,获得10
1秒前
桉桉关注了科研通微信公众号
1秒前
qiyun发布了新的文献求助10
2秒前
2秒前
3秒前
忧心的香之完成签到,获得积分10
3秒前
4秒前
Iurgnay发布了新的文献求助10
5秒前
烂漫夜梦发布了新的文献求助10
5秒前
云fly发布了新的文献求助10
5秒前
深情安青应助现代秦始皇采纳,获得10
6秒前
6秒前
beifeng完成签到,获得积分10
6秒前
馨雨清滢发布了新的文献求助10
6秒前
7秒前
专注芷烟完成签到 ,获得积分10
7秒前
7秒前
7秒前
Owen应助子建采纳,获得10
8秒前
beifeng发布了新的文献求助10
8秒前
8秒前
尤尢应助茄子采纳,获得10
8秒前
9秒前
阳光的安波完成签到,获得积分10
9秒前
9秒前
思源应助lixiang采纳,获得10
10秒前
10秒前
AT发布了新的文献求助10
10秒前
10秒前
星辰大海应助番茄采纳,获得10
10秒前
长生不老完成签到,获得积分10
10秒前
乐乐应助Iurgnay采纳,获得10
11秒前
袁大头发布了新的文献求助10
12秒前
txmjsn完成签到,获得积分0
12秒前
顾矜应助小蚊子采纳,获得20
12秒前
kingwill应助钮祜禄萱采纳,获得20
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542444
求助须知:如何正确求助?哪些是违规求助? 3119706
关于积分的说明 9340451
捐赠科研通 2817558
什么是DOI,文献DOI怎么找? 1549184
邀请新用户注册赠送积分活动 722039
科研通“疑难数据库(出版商)”最低求助积分说明 712928