Behavioral Intention Prediction in Driving Scenes: A Survey

行人 过程(计算) 领域(数学) 计算机科学 人工智能 人机交互 数据科学 运输工程 机器学习 工程类 数学 纯数学 操作系统
作者
Jianwu Fang,Fan Wang,Jianru Xue,Tat‐Seng Chua
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 8334-8355 被引量:3
标识
DOI:10.1109/tits.2024.3374342
摘要

In driving scenes, road agents often engage in frequent interaction and strive to understand their surroundings. Ego-agent (each road agent itself) predicts what behavior will be engaged by other road users all the time and expects a shared and consistent understanding for safe movement. To achieve this, Behavioral Intention Prediction (BIP) simulates such a human consideration process to anticipate specific behaviors, and the rapid development of BIP inevitably leads to new issues and challenges. To catalyze future research, this work provides a comprehensive review of BIP from the available datasets, key factors, challenges, pedestrian-centric and vehicle-centric BIP approaches, and BIP-aware applications. The investigation reveals that data-driven deep learning approaches have become the primary pipelines, while the behavioral intention types are still limited in most current datasets and methods (e.g., Crossing (C) and Not Crossing (NC) for pedestrians and Lane Changing (LC) for vehicles) in this field. In addition, current research on BIP in safe-critical scenarios (e.g., near-crashing situations) is limited. Through this investigation, we identify open issues in behavioral intention prediction and suggest possible insights for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
小蘑菇应助韶邑采纳,获得10
1秒前
1秒前
852应助故意的怜晴采纳,获得10
1秒前
3秒前
宋晓静发布了新的文献求助10
3秒前
4秒前
王菲完成签到,获得积分10
4秒前
予城发布了新的文献求助30
4秒前
4秒前
科研通AI2S应助Captain采纳,获得10
6秒前
6秒前
Lucas应助夕荀采纳,获得10
6秒前
Lmy完成签到,获得积分10
6秒前
salty完成签到 ,获得积分10
7秒前
东方发布了新的文献求助10
7秒前
雷家完成签到,获得积分10
7秒前
香蕉觅云应助H丶化羽采纳,获得10
8秒前
玩笑完成签到 ,获得积分10
8秒前
研友_nV2pkn发布了新的文献求助10
9秒前
敏敏发布了新的文献求助10
9秒前
9秒前
日富一日发布了新的文献求助10
10秒前
11秒前
11秒前
FashionBoy应助黄垚采纳,获得10
12秒前
搜集达人应助miaomiaojun采纳,获得10
12秒前
CodeCraft应助彩色剑采纳,获得10
13秒前
罗备完成签到,获得积分10
13秒前
科研小天才完成签到,获得积分10
14秒前
14秒前
14秒前
斯文败类应助zhizhaomai采纳,获得10
15秒前
dzz关注了科研通微信公众号
16秒前
夕荀发布了新的文献求助10
16秒前
香蕉觅云应助偷书贼采纳,获得20
17秒前
传奇3应助黄橙子采纳,获得10
17秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156221
求助须知:如何正确求助?哪些是违规求助? 2807720
关于积分的说明 7874164
捐赠科研通 2465918
什么是DOI,文献DOI怎么找? 1312504
科研通“疑难数据库(出版商)”最低求助积分说明 630154
版权声明 601912