清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A study on the high power microwave effects of PIN diode limiter based on deep learning algorithm

限制器 人工神经网络 二极管 微波食品加热 材料科学 功率(物理) 算法 PIN二极管 滤波器(信号处理) 计算机科学 电子工程 控制理论(社会学) 光电子学 工程类 物理 人工智能 电信 控制(管理) 量子力学 计算机视觉
作者
Huikai Chen,Wenze Gao,Yinfen Zhao,Shulong Wang,Xingyuan Yan,Hao Zhou,Shupeng Chen,Hongxia Liu
出处
期刊:Nanotechnology [IOP Publishing]
卷期号:35 (26): 265202-265202 被引量:3
标识
DOI:10.1088/1361-6528/ad3648
摘要

PIN diodes, due to their simple structure and variable resistance characteristics under high-frequency high-power excitation, are often used in radar front-end as limiters to filter high power microwaves (HPM) to prevent its power from entering the internal circuit and causing damage. This paper carries out theoretical derivation and research on the HPM effects of PIN diodes, and then uses an optimized neural network algorithm to replace traditional physical modeling to calculate and predict two types of HPM limiting indicators of PIN diode limiters. We proposes a neural network model for each of the following two prediction scenarios: in the scenario of time-junction temperature curves under different HPM irradiation, the weighted mean squared error (MSE) between the predicted values from the test dataset and the simulated values is below 0.004. While in predicting PIN limiter's power limitation threshold, insertion loss, and maximum isolation under different HPM irradiation, the MSE of the test set prediction values and simulation values are all less than 0.03. The method proposed in this research, which applies an optimized neural network algorithm to replace traditional physical modeling algorithms for studying the high-power microwave effects of PIN diode limiters, significantly improves the computational and simulation speed, reduces the calculation cost, and provides a new method for studying the high-power microwave effects of PIN diode limiters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
doublenine18发布了新的文献求助50
2秒前
2秒前
14秒前
斯文败类应助顾灵毓采纳,获得10
31秒前
32秒前
38秒前
42秒前
顾灵毓发布了新的文献求助10
43秒前
可爱的函函应助顾灵毓采纳,获得10
52秒前
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
顾灵毓发布了新的文献求助10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
李健应助顾灵毓采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
顾灵毓发布了新的文献求助10
2分钟前
2分钟前
HJJ完成签到 ,获得积分10
2分钟前
2分钟前
顾灵毓完成签到,获得积分10
2分钟前
tt完成签到,获得积分10
2分钟前
2分钟前
拼搏问薇完成签到 ,获得积分10
3分钟前
3分钟前
ZYP发布了新的文献求助10
3分钟前
3分钟前
doublenine18完成签到,获得积分10
3分钟前
科研通AI6应助doublenine18采纳,获得10
3分钟前
3分钟前
无极微光应助科研通管家采纳,获得20
3分钟前
3分钟前
慕青应助Xiu采纳,获得10
4分钟前
HYQ完成签到 ,获得积分10
4分钟前
4分钟前
Xiu发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639753
求助须知:如何正确求助?哪些是违规求助? 4750316
关于积分的说明 15007305
捐赠科研通 4797968
什么是DOI,文献DOI怎么找? 2564061
邀请新用户注册赠送积分活动 1522938
关于科研通互助平台的介绍 1482591