亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated Detection and Grading of Extraprostatic Extension of Prostate Cancer at MRI via Cascaded Deep Learning and Random Forest Classification

随机森林 前列腺癌 分级(工程) 人工智能 癌症检测 计算机科学 深度学习 前列腺 扩展(谓词逻辑) 模式识别(心理学) 放射科 医学 医学物理学 癌症 内科学 工程类 土木工程 程序设计语言
作者
Benjamin Simon,Katie Merriman,Stephanie A. Harmon,Jesse Tetreault,Enis C. Yılmaz,Zoë Blake,Maria J. Merino,Julie Y. An,Jamie Marko,Yan Mee Law,Sandeep Gurram,Bradford J. Wood,Peter L. Choyke,Peter A. Pinto,Barış Türkbey
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (10): 4096-4106 被引量:2
标识
DOI:10.1016/j.acra.2024.04.011
摘要

Extraprostatic extension (EPE) is well established as a significant predictor of prostate cancer aggression and recurrence. Accurate EPE assessment prior to radical prostatectomy can impact surgical approach. We aimed to utilize a deep learning-based AI workflow for automated EPE grading from prostate T2W MRI, ADC map, and High B DWI.An expert genitourinary radiologist conducted prospective clinical assessments of MRI scans for 634 patients and assigned risk for EPE using a grading technique. The training set and held-out independent test set consisted of 507 patients and 127 patients, respectively. Existing deep-learning AI models for prostate organ and lesion segmentation were leveraged to extract area and distance features for random forest classification models. Model performance was evaluated using balanced accuracy, ROC AUCs for each EPE grade, as well as sensitivity, specificity, and accuracy compared to EPE on histopathology.A balanced accuracy score of .390 ± 0.078 was achieved using a lesion detection probability threshold of 0.45 and distance features. Using the test set, ROC AUCs for AI-assigned EPE grades 0-3 were 0.70, 0.65, 0.68, and 0.55 respectively. When using EPE≥ 1 as the threshold for positive EPE, the model achieved a sensitivity of 0.67, specificity of 0.73, and accuracy of 0.72 compared to radiologist sensitivity of 0.81, specificity of 0.62, and accuracy of 0.66 using histopathology as the ground truth.Our AI workflow for assigning imaging-based EPE grades achieves an accuracy for predicting histologic EPE approaching that of physicians. This automated workflow has the potential to enhance physician decision-making for assessing the risk of EPE in patients undergoing treatment for prostate cancer due to its consistency and automation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
124332发布了新的文献求助10
2秒前
乐乐应助爱学习的小菜鸡采纳,获得10
3秒前
楠楠完成签到,获得积分10
4秒前
rui完成签到,获得积分10
5秒前
Akim应助keai采纳,获得10
8秒前
无花果应助QI采纳,获得10
13秒前
凯文完成签到 ,获得积分10
15秒前
21秒前
24秒前
24秒前
25秒前
yamo发布了新的文献求助10
28秒前
31秒前
GEM发布了新的文献求助10
31秒前
35秒前
打打应助QI采纳,获得10
35秒前
38秒前
体贴映阳发布了新的文献求助30
39秒前
丘比特应助雪白的凡灵采纳,获得10
41秒前
王志鹏完成签到 ,获得积分10
41秒前
GEM完成签到,获得积分20
44秒前
情怀应助超脱采纳,获得10
44秒前
酷波er应助北方采纳,获得10
44秒前
50秒前
阿钉完成签到 ,获得积分10
51秒前
cfsyyfujia完成签到 ,获得积分10
54秒前
万能图书馆应助pcr采纳,获得10
54秒前
55秒前
大个应助QI采纳,获得10
56秒前
体贴映阳完成签到,获得积分10
56秒前
ll完成签到 ,获得积分10
57秒前
辅仁发布了新的文献求助10
1分钟前
尼仲星完成签到,获得积分10
1分钟前
科研通AI2S应助千寻采纳,获得10
1分钟前
星辰大海应助QI采纳,获得10
1分钟前
辅仁完成签到,获得积分10
1分钟前
1分钟前
谁猪沉浮完成签到,获得积分10
1分钟前
pcr发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268584
求助须知:如何正确求助?哪些是违规求助? 2908068
关于积分的说明 8344359
捐赠科研通 2578470
什么是DOI,文献DOI怎么找? 1402013
科研通“疑难数据库(出版商)”最低求助积分说明 655240
邀请新用户注册赠送积分活动 634393