Automated Detection and Grading of Extraprostatic Extension of Prostate Cancer at MRI via Cascaded Deep Learning and Random Forest Classification

随机森林 前列腺癌 分级(工程) 人工智能 癌症检测 计算机科学 深度学习 前列腺 扩展(谓词逻辑) 模式识别(心理学) 放射科 医学 医学物理学 癌症 内科学 工程类 土木工程 程序设计语言
作者
Benjamin Simon,Katie Merriman,Stephanie A. Harmon,Jesse Tetreault,Enis C. Yılmaz,Zoë Blake,Maria J. Merino,Julie Y. An,Jamie Marko,Yan Mee Law,Sandeep Gurram,Bradford J. Wood,Peter L. Choyke,Peter A. Pinto,Barış Türkbey
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (10): 4096-4106 被引量:15
标识
DOI:10.1016/j.acra.2024.04.011
摘要

Extraprostatic extension (EPE) is well established as a significant predictor of prostate cancer aggression and recurrence. Accurate EPE assessment prior to radical prostatectomy can impact surgical approach. We aimed to utilize a deep learning-based AI workflow for automated EPE grading from prostate T2W MRI, ADC map, and High B DWI.An expert genitourinary radiologist conducted prospective clinical assessments of MRI scans for 634 patients and assigned risk for EPE using a grading technique. The training set and held-out independent test set consisted of 507 patients and 127 patients, respectively. Existing deep-learning AI models for prostate organ and lesion segmentation were leveraged to extract area and distance features for random forest classification models. Model performance was evaluated using balanced accuracy, ROC AUCs for each EPE grade, as well as sensitivity, specificity, and accuracy compared to EPE on histopathology.A balanced accuracy score of .390 ± 0.078 was achieved using a lesion detection probability threshold of 0.45 and distance features. Using the test set, ROC AUCs for AI-assigned EPE grades 0-3 were 0.70, 0.65, 0.68, and 0.55 respectively. When using EPE≥ 1 as the threshold for positive EPE, the model achieved a sensitivity of 0.67, specificity of 0.73, and accuracy of 0.72 compared to radiologist sensitivity of 0.81, specificity of 0.62, and accuracy of 0.66 using histopathology as the ground truth.Our AI workflow for assigning imaging-based EPE grades achieves an accuracy for predicting histologic EPE approaching that of physicians. This automated workflow has the potential to enhance physician decision-making for assessing the risk of EPE in patients undergoing treatment for prostate cancer due to its consistency and automation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lcx完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
乾清宫喝奶茶完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
李涵完成签到,获得积分10
5秒前
欣欣完成签到,获得积分10
6秒前
傲娇林发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
9秒前
研友_Z729Mn发布了新的文献求助10
10秒前
独特跳跳糖完成签到 ,获得积分10
11秒前
11秒前
hyl-tcm完成签到 ,获得积分10
12秒前
13秒前
13秒前
14秒前
LL发布了新的文献求助10
14秒前
xavier发布了新的文献求助10
14秒前
14秒前
孙意冉发布了新的文献求助10
15秒前
16秒前
hd发布了新的文献求助10
17秒前
18秒前
kakainho完成签到,获得积分10
18秒前
18秒前
坚定寒松完成签到 ,获得积分10
19秒前
19秒前
沈迎南发布了新的文献求助10
19秒前
甜甜寄凡发布了新的文献求助10
20秒前
Dr.feng完成签到,获得积分10
21秒前
jihenyouai0213完成签到,获得积分10
21秒前
可靠橘子发布了新的文献求助10
22秒前
等待的mango应助群众采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474