Convolutional Neural Network Approach for South African Sign Language Recognition and Translation

计算机科学 卷积神经网络 翻译(生物学) 人工智能 手语 符号(数学) 自然语言处理 语音识别 语言学 数学 生物化学 基因 信使核糖核酸 数学分析 哲学 化学
作者
Tebatso Gorgina Moape,Absolom Muzambi,Bester Chimbo
标识
DOI:10.1109/ictas59620.2024.10507130
摘要

Sign language is a natural, visually oriented, and non-verbal communication channel for the deaf and dumb community. However, not everyone understands sign language, particularly, individuals outside of the deaf-dumb community. This challenge has been addressed through the development of automatic sign language recognition (SLR) systems. Various SLR applications have been developed for English, Indian, Korean, Turkish, Arabic, and other sign languages. However, few studies have been conducted on South African SLR due to the lack of publicly available sign language datasets. In addition, the existing South African SLR systems face challenges in being conducted efficiently as a result of special equipment such as wearable data gloves needed for hand gesture recognition and light illumination complexity background challenges. This paper applies deep learning-based convolutional neural networks (CNNs) for South African SLR and classification. In this work, the CNN model was trained on 12420 images of 26 static South African sign language alphabets and 4050 validation datasets using the Gaussian blurring combined with adaptive threshold pre-processing techniques. The proposed model is embedded with a Google Translate application program interface (API) that translates the signed output into various South African official languages to ensure that sign language can be understood in various languages beyond English. The obtained results and comparative analysis demonstrate the efficiency of the proposed model with a weighted average of 98% accuracy, precision, recall, and F1-score outperforming the existing models in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Casson完成签到,获得积分10
1秒前
1秒前
jimmy完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
小猪猪完成签到,获得积分10
6秒前
诚洁完成签到,获得积分10
7秒前
7秒前
Rondab应助horizon采纳,获得10
7秒前
8秒前
8秒前
piaopiao发布了新的文献求助10
9秒前
9秒前
华仔应助樱桃窝窝头采纳,获得10
10秒前
苏诗兰发布了新的文献求助10
12秒前
12秒前
小二郎应助天涯小文刀采纳,获得10
13秒前
熠熠发布了新的文献求助10
13秒前
honey完成签到,获得积分10
14秒前
JINYUBAO完成签到,获得积分10
15秒前
高兴的万宝路完成签到,获得积分10
16秒前
16秒前
datang完成签到,获得积分10
17秒前
18秒前
大个应助小学生采纳,获得10
20秒前
DarkLord发布了新的文献求助10
24秒前
24秒前
hanabi发布了新的文献求助10
24秒前
NexusExplorer应助鱼儿想游采纳,获得10
26秒前
Hello应助直率一刀采纳,获得10
26秒前
李健应助思维隋采纳,获得10
28秒前
不钓鱼发布了新的文献求助10
29秒前
CodeCraft应助hanabi采纳,获得10
30秒前
32秒前
33秒前
33秒前
草莓熊1215完成签到 ,获得积分10
34秒前
34秒前
badbaby完成签到 ,获得积分10
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999295
求助须知:如何正确求助?哪些是违规求助? 3538645
关于积分的说明 11274805
捐赠科研通 3277547
什么是DOI,文献DOI怎么找? 1807597
邀请新用户注册赠送积分活动 883967
科研通“疑难数据库(出版商)”最低求助积分说明 810090