Convolutional Neural Network Approach for South African Sign Language Recognition and Translation

计算机科学 卷积神经网络 翻译(生物学) 人工智能 手语 符号(数学) 自然语言处理 语音识别 语言学 数学 数学分析 生物化学 化学 哲学 信使核糖核酸 基因
作者
Tebatso Gorgina Moape,Absolom Muzambi,Bester Chimbo
标识
DOI:10.1109/ictas59620.2024.10507130
摘要

Sign language is a natural, visually oriented, and non-verbal communication channel for the deaf and dumb community. However, not everyone understands sign language, particularly, individuals outside of the deaf-dumb community. This challenge has been addressed through the development of automatic sign language recognition (SLR) systems. Various SLR applications have been developed for English, Indian, Korean, Turkish, Arabic, and other sign languages. However, few studies have been conducted on South African SLR due to the lack of publicly available sign language datasets. In addition, the existing South African SLR systems face challenges in being conducted efficiently as a result of special equipment such as wearable data gloves needed for hand gesture recognition and light illumination complexity background challenges. This paper applies deep learning-based convolutional neural networks (CNNs) for South African SLR and classification. In this work, the CNN model was trained on 12420 images of 26 static South African sign language alphabets and 4050 validation datasets using the Gaussian blurring combined with adaptive threshold pre-processing techniques. The proposed model is embedded with a Google Translate application program interface (API) that translates the signed output into various South African official languages to ensure that sign language can be understood in various languages beyond English. The obtained results and comparative analysis demonstrate the efficiency of the proposed model with a weighted average of 98% accuracy, precision, recall, and F1-score outperforming the existing models in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
lfg发布了新的文献求助10
2秒前
2秒前
哈哈哈完成签到,获得积分10
3秒前
doclarrin完成签到 ,获得积分10
3秒前
kafeidegushi发布了新的文献求助10
3秒前
酷波er应助枫枫829采纳,获得10
4秒前
non发布了新的文献求助10
4秒前
黎书禾发布了新的文献求助10
4秒前
汉堡包应助欢喜采纳,获得10
4秒前
aaaaa完成签到,获得积分10
5秒前
宜醉宜游宜睡应助十二采纳,获得10
6秒前
英勇的曼卉完成签到,获得积分10
6秒前
SCZOU发布了新的文献求助10
6秒前
kkkran2完成签到,获得积分10
7秒前
7秒前
7秒前
10秒前
10秒前
崔佳鑫发布了新的文献求助10
11秒前
non完成签到,获得积分10
12秒前
mrcat完成签到 ,获得积分10
12秒前
Bryn_Wang完成签到,获得积分10
12秒前
12秒前
13秒前
合泽河完成签到,获得积分10
13秒前
咕噜完成签到,获得积分10
14秒前
14秒前
15秒前
1337003319发布了新的文献求助30
15秒前
盈盈发布了新的文献求助10
15秒前
哐哐哐铛完成签到,获得积分10
16秒前
SCZOU完成签到,获得积分10
16秒前
王萍发布了新的文献求助10
16秒前
kiterunner发布了新的文献求助10
16秒前
翘啊发布了新的文献求助10
17秒前
17秒前
神勇松完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295981
求助须知:如何正确求助?哪些是违规求助? 2931828
关于积分的说明 8453919
捐赠科研通 2604382
什么是DOI,文献DOI怎么找? 1421708
科研通“疑难数据库(出版商)”最低求助积分说明 661190
邀请新用户注册赠送积分活动 644044