Convolutional Neural Network Approach for South African Sign Language Recognition and Translation

计算机科学 卷积神经网络 翻译(生物学) 人工智能 手语 符号(数学) 自然语言处理 语音识别 语言学 数学 数学分析 生物化学 化学 哲学 信使核糖核酸 基因
作者
Tebatso Gorgina Moape,Absolom Muzambi,Bester Chimbo
标识
DOI:10.1109/ictas59620.2024.10507130
摘要

Sign language is a natural, visually oriented, and non-verbal communication channel for the deaf and dumb community. However, not everyone understands sign language, particularly, individuals outside of the deaf-dumb community. This challenge has been addressed through the development of automatic sign language recognition (SLR) systems. Various SLR applications have been developed for English, Indian, Korean, Turkish, Arabic, and other sign languages. However, few studies have been conducted on South African SLR due to the lack of publicly available sign language datasets. In addition, the existing South African SLR systems face challenges in being conducted efficiently as a result of special equipment such as wearable data gloves needed for hand gesture recognition and light illumination complexity background challenges. This paper applies deep learning-based convolutional neural networks (CNNs) for South African SLR and classification. In this work, the CNN model was trained on 12420 images of 26 static South African sign language alphabets and 4050 validation datasets using the Gaussian blurring combined with adaptive threshold pre-processing techniques. The proposed model is embedded with a Google Translate application program interface (API) that translates the signed output into various South African official languages to ensure that sign language can be understood in various languages beyond English. The obtained results and comparative analysis demonstrate the efficiency of the proposed model with a weighted average of 98% accuracy, precision, recall, and F1-score outperforming the existing models in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助阿楠采纳,获得10
1秒前
忧郁的听露完成签到,获得积分20
1秒前
宇文天川完成签到,获得积分10
2秒前
2秒前
三十三完成签到,获得积分10
2秒前
顾矜应助li采纳,获得10
2秒前
2秒前
久久发布了新的文献求助10
3秒前
蔡小葵完成签到 ,获得积分10
3秒前
3秒前
科目三应助cd采纳,获得10
4秒前
研友_LXOvq8完成签到,获得积分10
4秒前
xu完成签到,获得积分10
4秒前
祝雲发布了新的文献求助10
4秒前
鳗鱼灵寒完成签到 ,获得积分10
4秒前
5秒前
5秒前
从这完成签到,获得积分10
5秒前
乐乱发布了新的文献求助10
5秒前
铁匠完成签到,获得积分10
5秒前
5秒前
6秒前
慕青应助抓恐龙采纳,获得10
6秒前
伶俐的不尤完成签到,获得积分20
6秒前
6秒前
zhouyan完成签到,获得积分10
7秒前
老疯智完成签到,获得积分10
7秒前
夜已深完成签到,获得积分10
7秒前
ZXneuro完成签到,获得积分10
7秒前
7秒前
一平发布了新的文献求助10
8秒前
爱吃泡芙完成签到,获得积分10
8秒前
8秒前
Ll发布了新的文献求助10
9秒前
集力申完成签到,获得积分10
9秒前
老疯智发布了新的文献求助10
9秒前
9秒前
宇文青寒完成签到,获得积分10
10秒前
10秒前
心灵美的抽屉完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672