Meta-learning-based sample discrimination framework for improving dynamic selection of classifiers under label noise

噪音(视频) 选择(遗传算法) 样品(材料) 计算机科学 模式识别(心理学) 人工智能 机器学习 色谱法 化学 图像(数学)
作者
Che Xu,Yingming Zhu,Peng Zhu,Longqing Cui
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:295: 111811-111811
标识
DOI:10.1016/j.knosys.2024.111811
摘要

Many real-world datasets encounter the issue of label noise (LN), which significantly degrades the learning performances of classification models. While ensemble learning (EL) has been widely employed to tackle this problem, the Dynamic Selection (DS) of classifiers, as a promising EL branch, is particularly sensitive to LN. To address this issue, a meta-learning-based sample discrimination (MSD) framework is proposed in this paper. Initially, this paper analyzes how LN affects the performance of DS methods through a visual example. Subsequently, under the premise that DS methods are only applicable to samples whose neighborhood is minimally affected or unaffected by LN, a meta-learning dataset is generated in the framework, where the meta-features and meta-labels are derived from the characteristics and the real class distribution of local regions of the samples, respectively. With this dataset, a meta-learner is constructed to determine the feasibility of using DS methods directly to classify a given sample in the presence of LN. For samples that DS methods cannot handle, a novel DS process based on the Genetic Algorithm is designed to mitigate the negative impact of LN. The effectiveness of the MSD framework is validated through extensive experiments conducted on thirty real datasets. These experiments demonstrate the capability of the MSD framework to improve the performances of DS methods across different levels of LN. Furthermore, the efficacy of the proposed MSD framework in handling LN is also highlighted by comparing it with a state-of-the-art method and four mainstream EL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
itachi完成签到,获得积分10
1秒前
金金金金完成签到,获得积分10
1秒前
Cheryy完成签到,获得积分10
1秒前
Rgly发布了新的文献求助10
1秒前
简单发布了新的文献求助10
1秒前
2秒前
Yifan2024应助咖啡不加冰采纳,获得30
2秒前
哟哟哟发布了新的文献求助10
2秒前
2秒前
幸福蘑菇完成签到,获得积分10
3秒前
白马爱毛驴完成签到,获得积分10
3秒前
3秒前
niu完成签到 ,获得积分10
3秒前
君齐完成签到,获得积分10
4秒前
乔治哇完成签到,获得积分10
4秒前
又又完成签到,获得积分10
4秒前
小小沙发布了新的文献求助10
4秒前
林。发布了新的文献求助10
4秒前
检检边lin完成签到,获得积分10
5秒前
852应助安静蛟凤采纳,获得10
5秒前
鹿丫丫发布了新的文献求助10
5秒前
毅宁静610应助逍遥采纳,获得10
6秒前
科目三应助自觉盼雁采纳,获得10
7秒前
逸龙完成签到,获得积分10
7秒前
蛙鼠兔完成签到,获得积分10
7秒前
wanci应助苹果惜梦采纳,获得10
7秒前
dgdt2787发布了新的文献求助20
7秒前
沐浠发布了新的文献求助10
8秒前
9秒前
9秒前
夜凉如水完成签到,获得积分10
9秒前
9秒前
bkagyin应助pluto采纳,获得10
10秒前
Joyj99完成签到,获得积分10
10秒前
英俊的铭应助豆豆采纳,获得10
10秒前
无辜渊思发布了新的文献求助10
10秒前
11秒前
科研小班完成签到,获得积分20
11秒前
清脆如娆完成签到 ,获得积分10
11秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3408846
求助须知:如何正确求助?哪些是违规求助? 3012784
关于积分的说明 8855969
捐赠科研通 2700132
什么是DOI,文献DOI怎么找? 1480218
科研通“疑难数据库(出版商)”最低求助积分说明 684251
邀请新用户注册赠送积分活动 678578