PD47-07 THE STUDY OF AUTOMATIC RECOGNITION OF STONE COMPONENTS USING DIGITAL IMAGES FROM INTRAOPERATIVE FLEXIBLE URETEROSCOPY

输尿管镜检查 计算机科学 计算机视觉 人工智能 医学 计算机图形学(图像) 外科 输尿管
作者
Daming Luo,Bixiao Wang,Yubao Liu,Haifeng Song,Weiguo Hu,Jianxing Li
出处
期刊:The Journal of Urology [Ovid Technologies (Wolters Kluwer)]
卷期号:211 (5S)
标识
DOI:10.1097/01.ju.0001008652.62443.0a.07
摘要

You have accessJournal of UrologyStone Disease: Surgical Therapy (Including ESWL) IV (PD47)1 May 2024PD47-07 THE STUDY OF AUTOMATIC RECOGNITION OF STONE COMPONENTS USING DIGITAL IMAGES FROM INTRAOPERATIVE FLEXIBLE URETEROSCOPY Daxun Luo, Bixiao Wang, Yubao Liu, Haifeng Song, Weiguo Hu, and Jianxing Li Daxun LuoDaxun Luo , Bixiao WangBixiao Wang , Yubao LiuYubao Liu , Haifeng SongHaifeng Song , Weiguo HuWeiguo Hu , and Jianxing LiJianxing Li View All Author Informationhttps://doi.org/10.1097/01.JU.0001008652.62443.0a.07AboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract INTRODUCTION AND OBJECTIVE: This study aimed to investigate whether urinary stones can be predicted by convolutional neural network (CNN) using flexible ureteroscopic (fURS) images. METHODS: This study retrospectively used surgical videos of fURS performed by a single surgeon using single-use electronic ureteroscopes (Zebra) between 2022 and 2023 . Digital images of the surfaces of the stones before laser fragmentation and relatively intact cross-sections of stones were captured from the surgical video. The cases were categorized into five groups based on postoperative infrared spectroscopy analysis: calcium oxalate group, calcium oxalate mixed with uric acid group, calcium oxalate mixed with carbonate apatite group, struvite mixed with calcium oxalate mixed with carbonate apatite group, and a control group without stones. A total of 372 images were finally included and divided into training, validation and test sets. In the CNN model, ResNet-152-V2 model was used, and to enhance the network's generalization capability, data augmentation was applied to expand the training dataset. Only endoscopic digital images and stone classification data were input to achieve minimal supervised learning (Fig 1). RESULTS: There were 113 cases in the calcium oxalate group, 19 cases in the calcium oxalate mixed with uric acid group, 134 cases in the calcium oxalate mixed with carbonate apatite group, 19 cases in the struvite mixed with calcium oxalate mixed with carbonate apatite group, and 67 cases in the control group without stones. After whole training, the total accuracy was 98.0% on validation set. After training and validation, the model was tested using the test set consisting of 26 cases with a total accuracy of 80.8%. The recall, specificity and precision of the test result were 75%, 88.9%, and75% in calcium oxalate group, 50%, 100%, and 100% in the calcium oxalate mixed with uric acid group, 83.3%, 100%, and 100% in the calcium oxalate mixed with carbonate apatite group, and 100% for all three metrics in the struvite mixed with calcium oxalate mixed with carbonate apatite group. The control group without stones had values of 100%, 85%, and 66.7% for the three metrics, respectively. CONCLUSIONS: This preliminary study suggests that deep CNN is a promising method for identifying the composition of renal stones from endoscopic images obtained during surgery. Both pure and mixed stone compositions can be distinguished. Surface and cross-sectional images collected in a clinical setting analyzed by deep CNN can provide valuable information about the morphology of stones for computer-aided diagnosis. Download PPT Source of Funding: No source of funds © 2024 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetails Volume 211Issue 5SMay 2024Page: e982 Advertisement Copyright & Permissions© 2024 by American Urological Association Education and Research, Inc.Metrics Author Information Daxun Luo More articles by this author Bixiao Wang More articles by this author Yubao Liu More articles by this author Haifeng Song More articles by this author Weiguo Hu More articles by this author Jianxing Li More articles by this author Expand All Advertisement PDF downloadLoading ...

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cjx关闭了cjx文献求助
刚刚
英俊的铭应助粗暴的大门采纳,获得10
刚刚
刚刚
sqw发布了新的文献求助10
刚刚
水芸完成签到,获得积分10
2秒前
EDW完成签到 ,获得积分10
3秒前
3秒前
4秒前
上官若男应助17采纳,获得10
5秒前
黄磊发布了新的文献求助10
6秒前
134应助胡萝卜z采纳,获得20
6秒前
7秒前
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
wlq完成签到,获得积分10
8秒前
辞镜若鱼完成签到,获得积分10
9秒前
小杭76发布了新的文献求助10
9秒前
sqw完成签到,获得积分10
10秒前
xxfsx应助初昀杭采纳,获得10
10秒前
10秒前
甜蜜香魔关注了科研通微信公众号
11秒前
赘婿应助平淡树叶采纳,获得10
13秒前
13秒前
慕青应助袁琴采纳,获得10
14秒前
111111111完成签到,获得积分10
14秒前
圣斗士完成签到,获得积分10
15秒前
坚定晓兰应助慈祥的惜霜采纳,获得10
15秒前
昵称什么的不重要啦完成签到 ,获得积分10
16秒前
kk发布了新的文献求助10
16秒前
AugustWong完成签到,获得积分10
17秒前
健康的小鸽子完成签到 ,获得积分10
17秒前
17秒前
晓晓晓朋友完成签到,获得积分10
18秒前
情怀应助酷拉皮卡采纳,获得10
18秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474258
求助须知:如何正确求助?哪些是违规求助? 4576037
关于积分的说明 14356246
捐赠科研通 4503903
什么是DOI,文献DOI怎么找? 2467852
邀请新用户注册赠送积分活动 1455603
关于科研通互助平台的介绍 1429618