PD47-07 THE STUDY OF AUTOMATIC RECOGNITION OF STONE COMPONENTS USING DIGITAL IMAGES FROM INTRAOPERATIVE FLEXIBLE URETEROSCOPY

输尿管镜检查 计算机科学 计算机视觉 人工智能 医学 计算机图形学(图像) 外科 输尿管
作者
Daming Luo,Bixiao Wang,Yubao Liu,Haifeng Song,Weiguo Hu,Jianxing Li
出处
期刊:The Journal of Urology [Ovid Technologies (Wolters Kluwer)]
卷期号:211 (5S)
标识
DOI:10.1097/01.ju.0001008652.62443.0a.07
摘要

You have accessJournal of UrologyStone Disease: Surgical Therapy (Including ESWL) IV (PD47)1 May 2024PD47-07 THE STUDY OF AUTOMATIC RECOGNITION OF STONE COMPONENTS USING DIGITAL IMAGES FROM INTRAOPERATIVE FLEXIBLE URETEROSCOPY Daxun Luo, Bixiao Wang, Yubao Liu, Haifeng Song, Weiguo Hu, and Jianxing Li Daxun LuoDaxun Luo , Bixiao WangBixiao Wang , Yubao LiuYubao Liu , Haifeng SongHaifeng Song , Weiguo HuWeiguo Hu , and Jianxing LiJianxing Li View All Author Informationhttps://doi.org/10.1097/01.JU.0001008652.62443.0a.07AboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract INTRODUCTION AND OBJECTIVE: This study aimed to investigate whether urinary stones can be predicted by convolutional neural network (CNN) using flexible ureteroscopic (fURS) images. METHODS: This study retrospectively used surgical videos of fURS performed by a single surgeon using single-use electronic ureteroscopes (Zebra) between 2022 and 2023 . Digital images of the surfaces of the stones before laser fragmentation and relatively intact cross-sections of stones were captured from the surgical video. The cases were categorized into five groups based on postoperative infrared spectroscopy analysis: calcium oxalate group, calcium oxalate mixed with uric acid group, calcium oxalate mixed with carbonate apatite group, struvite mixed with calcium oxalate mixed with carbonate apatite group, and a control group without stones. A total of 372 images were finally included and divided into training, validation and test sets. In the CNN model, ResNet-152-V2 model was used, and to enhance the network's generalization capability, data augmentation was applied to expand the training dataset. Only endoscopic digital images and stone classification data were input to achieve minimal supervised learning (Fig 1). RESULTS: There were 113 cases in the calcium oxalate group, 19 cases in the calcium oxalate mixed with uric acid group, 134 cases in the calcium oxalate mixed with carbonate apatite group, 19 cases in the struvite mixed with calcium oxalate mixed with carbonate apatite group, and 67 cases in the control group without stones. After whole training, the total accuracy was 98.0% on validation set. After training and validation, the model was tested using the test set consisting of 26 cases with a total accuracy of 80.8%. The recall, specificity and precision of the test result were 75%, 88.9%, and75% in calcium oxalate group, 50%, 100%, and 100% in the calcium oxalate mixed with uric acid group, 83.3%, 100%, and 100% in the calcium oxalate mixed with carbonate apatite group, and 100% for all three metrics in the struvite mixed with calcium oxalate mixed with carbonate apatite group. The control group without stones had values of 100%, 85%, and 66.7% for the three metrics, respectively. CONCLUSIONS: This preliminary study suggests that deep CNN is a promising method for identifying the composition of renal stones from endoscopic images obtained during surgery. Both pure and mixed stone compositions can be distinguished. Surface and cross-sectional images collected in a clinical setting analyzed by deep CNN can provide valuable information about the morphology of stones for computer-aided diagnosis. Download PPT Source of Funding: No source of funds © 2024 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetails Volume 211Issue 5SMay 2024Page: e982 Advertisement Copyright & Permissions© 2024 by American Urological Association Education and Research, Inc.Metrics Author Information Daxun Luo More articles by this author Bixiao Wang More articles by this author Yubao Liu More articles by this author Haifeng Song More articles by this author Weiguo Hu More articles by this author Jianxing Li More articles by this author Expand All Advertisement PDF downloadLoading ...

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
田様应助沙丁鹌鹑采纳,获得10
2秒前
嗯哼应助兆渊采纳,获得10
2秒前
黄小慧发布了新的文献求助10
2秒前
kuzzi发布了新的文献求助30
3秒前
星有灵溪完成签到,获得积分10
3秒前
彭于晏应助愛迪采纳,获得10
3秒前
4秒前
hzb发布了新的文献求助10
4秒前
Arjun应助香蕉君达采纳,获得50
5秒前
可靠的大美完成签到,获得积分10
5秒前
干净问筠完成签到,获得积分10
6秒前
ordin发布了新的文献求助10
6秒前
7秒前
不配.应助科研通管家采纳,获得30
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
不配.应助科研通管家采纳,获得30
8秒前
不配.应助科研通管家采纳,获得30
8秒前
Hayat应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
CodeCraft应助勤奋的晓晓采纳,获得10
11秒前
11秒前
11发布了新的文献求助10
12秒前
13秒前
善学以致用应助专注凌文采纳,获得10
13秒前
12rcli发布了新的文献求助10
13秒前
饱满一手完成签到 ,获得积分10
13秒前
Archie完成签到,获得积分10
16秒前
waws发布了新的文献求助10
17秒前
许七安完成签到,获得积分10
18秒前
小果冻梨发布了新的文献求助20
19秒前
ming应助可靠的大美采纳,获得10
19秒前
20秒前
嗯哼应助Zq采纳,获得10
20秒前
21秒前
小熊妮子爱喝草莓乌龙茶完成签到 ,获得积分10
21秒前
搬砖达人完成签到,获得积分10
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248513
求助须知:如何正确求助?哪些是违规求助? 2891903
关于积分的说明 8269128
捐赠科研通 2559920
什么是DOI,文献DOI怎么找? 1388768
科研通“疑难数据库(出版商)”最低求助积分说明 650897
邀请新用户注册赠送积分活动 627798