PD47-07 THE STUDY OF AUTOMATIC RECOGNITION OF STONE COMPONENTS USING DIGITAL IMAGES FROM INTRAOPERATIVE FLEXIBLE URETEROSCOPY

输尿管镜检查 计算机科学 计算机视觉 人工智能 医学 计算机图形学(图像) 外科 输尿管
作者
Daming Luo,Bixiao Wang,Yubao Liu,Haifeng Song,Weiguo Hu,Jianxing Li
出处
期刊:The Journal of Urology [Lippincott Williams & Wilkins]
卷期号:211 (5S)
标识
DOI:10.1097/01.ju.0001008652.62443.0a.07
摘要

You have accessJournal of UrologyStone Disease: Surgical Therapy (Including ESWL) IV (PD47)1 May 2024PD47-07 THE STUDY OF AUTOMATIC RECOGNITION OF STONE COMPONENTS USING DIGITAL IMAGES FROM INTRAOPERATIVE FLEXIBLE URETEROSCOPY Daxun Luo, Bixiao Wang, Yubao Liu, Haifeng Song, Weiguo Hu, and Jianxing Li Daxun LuoDaxun Luo , Bixiao WangBixiao Wang , Yubao LiuYubao Liu , Haifeng SongHaifeng Song , Weiguo HuWeiguo Hu , and Jianxing LiJianxing Li View All Author Informationhttps://doi.org/10.1097/01.JU.0001008652.62443.0a.07AboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract INTRODUCTION AND OBJECTIVE: This study aimed to investigate whether urinary stones can be predicted by convolutional neural network (CNN) using flexible ureteroscopic (fURS) images. METHODS: This study retrospectively used surgical videos of fURS performed by a single surgeon using single-use electronic ureteroscopes (Zebra) between 2022 and 2023 . Digital images of the surfaces of the stones before laser fragmentation and relatively intact cross-sections of stones were captured from the surgical video. The cases were categorized into five groups based on postoperative infrared spectroscopy analysis: calcium oxalate group, calcium oxalate mixed with uric acid group, calcium oxalate mixed with carbonate apatite group, struvite mixed with calcium oxalate mixed with carbonate apatite group, and a control group without stones. A total of 372 images were finally included and divided into training, validation and test sets. In the CNN model, ResNet-152-V2 model was used, and to enhance the network's generalization capability, data augmentation was applied to expand the training dataset. Only endoscopic digital images and stone classification data were input to achieve minimal supervised learning (Fig 1). RESULTS: There were 113 cases in the calcium oxalate group, 19 cases in the calcium oxalate mixed with uric acid group, 134 cases in the calcium oxalate mixed with carbonate apatite group, 19 cases in the struvite mixed with calcium oxalate mixed with carbonate apatite group, and 67 cases in the control group without stones. After whole training, the total accuracy was 98.0% on validation set. After training and validation, the model was tested using the test set consisting of 26 cases with a total accuracy of 80.8%. The recall, specificity and precision of the test result were 75%, 88.9%, and75% in calcium oxalate group, 50%, 100%, and 100% in the calcium oxalate mixed with uric acid group, 83.3%, 100%, and 100% in the calcium oxalate mixed with carbonate apatite group, and 100% for all three metrics in the struvite mixed with calcium oxalate mixed with carbonate apatite group. The control group without stones had values of 100%, 85%, and 66.7% for the three metrics, respectively. CONCLUSIONS: This preliminary study suggests that deep CNN is a promising method for identifying the composition of renal stones from endoscopic images obtained during surgery. Both pure and mixed stone compositions can be distinguished. Surface and cross-sectional images collected in a clinical setting analyzed by deep CNN can provide valuable information about the morphology of stones for computer-aided diagnosis. Download PPT Source of Funding: No source of funds © 2024 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetails Volume 211Issue 5SMay 2024Page: e982 Advertisement Copyright & Permissions© 2024 by American Urological Association Education and Research, Inc.Metrics Author Information Daxun Luo More articles by this author Bixiao Wang More articles by this author Yubao Liu More articles by this author Haifeng Song More articles by this author Weiguo Hu More articles by this author Jianxing Li More articles by this author Expand All Advertisement PDF downloadLoading ...

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhukun完成签到,获得积分10
刚刚
激动的小懒猪完成签到,获得积分10
1秒前
积极汉堡完成签到,获得积分10
1秒前
zzzzzzzp完成签到,获得积分10
3秒前
3秒前
Sci_chen完成签到,获得积分20
3秒前
xingkun完成签到,获得积分10
4秒前
Lillie完成签到,获得积分10
4秒前
孟杰发布了新的文献求助10
4秒前
聚散流沙完成签到,获得积分10
4秒前
深情安青应助隐形的星月采纳,获得10
4秒前
灵活又幸福的胖完成签到,获得积分10
4秒前
学术晋级者完成签到,获得积分10
5秒前
好嗨哟完成签到,获得积分10
5秒前
小爽完成签到,获得积分10
6秒前
凑个数完成签到 ,获得积分10
6秒前
6秒前
可爱的函函应助Roger采纳,获得10
6秒前
hhh完成签到,获得积分10
7秒前
李彪完成签到,获得积分10
7秒前
7秒前
JC完成签到,获得积分10
8秒前
8秒前
一蓑烟雨任平生完成签到,获得积分0
8秒前
范范发布了新的文献求助10
8秒前
wwsybx完成签到 ,获得积分10
8秒前
科研通AI6应助Jenkin采纳,获得10
8秒前
8秒前
8秒前
大个应助方圆几里采纳,获得10
9秒前
黄琳发布了新的文献求助10
9秒前
虚幻沛文完成签到 ,获得积分10
9秒前
ezreal完成签到,获得积分10
10秒前
10秒前
小胡崽崽吖完成签到,获得积分10
11秒前
JS完成签到,获得积分10
11秒前
研友_VZG7GZ应助yoyo采纳,获得10
12秒前
小红发布了新的文献求助10
12秒前
举个栗子发布了新的文献求助10
13秒前
中平完成签到 ,获得积分10
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5235010
求助须知:如何正确求助?哪些是违规求助? 4403401
关于积分的说明 13701726
捐赠科研通 4270712
什么是DOI,文献DOI怎么找? 2343742
邀请新用户注册赠送积分活动 1340920
关于科研通互助平台的介绍 1298305