PD47-07 THE STUDY OF AUTOMATIC RECOGNITION OF STONE COMPONENTS USING DIGITAL IMAGES FROM INTRAOPERATIVE FLEXIBLE URETEROSCOPY

输尿管镜检查 计算机科学 计算机视觉 人工智能 医学 计算机图形学(图像) 外科 输尿管
作者
Daming Luo,Bixiao Wang,Yubao Liu,Haifeng Song,Weiguo Hu,Jianxing Li
出处
期刊:The Journal of Urology [Ovid Technologies (Wolters Kluwer)]
卷期号:211 (5S)
标识
DOI:10.1097/01.ju.0001008652.62443.0a.07
摘要

You have accessJournal of UrologyStone Disease: Surgical Therapy (Including ESWL) IV (PD47)1 May 2024PD47-07 THE STUDY OF AUTOMATIC RECOGNITION OF STONE COMPONENTS USING DIGITAL IMAGES FROM INTRAOPERATIVE FLEXIBLE URETEROSCOPY Daxun Luo, Bixiao Wang, Yubao Liu, Haifeng Song, Weiguo Hu, and Jianxing Li Daxun LuoDaxun Luo , Bixiao WangBixiao Wang , Yubao LiuYubao Liu , Haifeng SongHaifeng Song , Weiguo HuWeiguo Hu , and Jianxing LiJianxing Li View All Author Informationhttps://doi.org/10.1097/01.JU.0001008652.62443.0a.07AboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract INTRODUCTION AND OBJECTIVE: This study aimed to investigate whether urinary stones can be predicted by convolutional neural network (CNN) using flexible ureteroscopic (fURS) images. METHODS: This study retrospectively used surgical videos of fURS performed by a single surgeon using single-use electronic ureteroscopes (Zebra) between 2022 and 2023 . Digital images of the surfaces of the stones before laser fragmentation and relatively intact cross-sections of stones were captured from the surgical video. The cases were categorized into five groups based on postoperative infrared spectroscopy analysis: calcium oxalate group, calcium oxalate mixed with uric acid group, calcium oxalate mixed with carbonate apatite group, struvite mixed with calcium oxalate mixed with carbonate apatite group, and a control group without stones. A total of 372 images were finally included and divided into training, validation and test sets. In the CNN model, ResNet-152-V2 model was used, and to enhance the network's generalization capability, data augmentation was applied to expand the training dataset. Only endoscopic digital images and stone classification data were input to achieve minimal supervised learning (Fig 1). RESULTS: There were 113 cases in the calcium oxalate group, 19 cases in the calcium oxalate mixed with uric acid group, 134 cases in the calcium oxalate mixed with carbonate apatite group, 19 cases in the struvite mixed with calcium oxalate mixed with carbonate apatite group, and 67 cases in the control group without stones. After whole training, the total accuracy was 98.0% on validation set. After training and validation, the model was tested using the test set consisting of 26 cases with a total accuracy of 80.8%. The recall, specificity and precision of the test result were 75%, 88.9%, and75% in calcium oxalate group, 50%, 100%, and 100% in the calcium oxalate mixed with uric acid group, 83.3%, 100%, and 100% in the calcium oxalate mixed with carbonate apatite group, and 100% for all three metrics in the struvite mixed with calcium oxalate mixed with carbonate apatite group. The control group without stones had values of 100%, 85%, and 66.7% for the three metrics, respectively. CONCLUSIONS: This preliminary study suggests that deep CNN is a promising method for identifying the composition of renal stones from endoscopic images obtained during surgery. Both pure and mixed stone compositions can be distinguished. Surface and cross-sectional images collected in a clinical setting analyzed by deep CNN can provide valuable information about the morphology of stones for computer-aided diagnosis. Download PPT Source of Funding: No source of funds © 2024 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetails Volume 211Issue 5SMay 2024Page: e982 Advertisement Copyright & Permissions© 2024 by American Urological Association Education and Research, Inc.Metrics Author Information Daxun Luo More articles by this author Bixiao Wang More articles by this author Yubao Liu More articles by this author Haifeng Song More articles by this author Weiguo Hu More articles by this author Jianxing Li More articles by this author Expand All Advertisement PDF downloadLoading ...

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luckweb完成签到,获得积分10
刚刚
zuihaodewomen完成签到 ,获得积分10
2秒前
执着的以筠完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
7秒前
山东人在南京完成签到 ,获得积分10
8秒前
ABJ完成签到 ,获得积分10
9秒前
刘若萱发布了新的文献求助10
13秒前
Ocean完成签到,获得积分10
15秒前
顾矜应助kakafly采纳,获得10
18秒前
wonwojo完成签到 ,获得积分10
19秒前
yx完成签到 ,获得积分10
20秒前
dream完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
AmyHu完成签到,获得积分10
24秒前
科研小卡拉米6完成签到 ,获得积分10
25秒前
落落完成签到 ,获得积分10
25秒前
淡然的剑通完成签到 ,获得积分10
26秒前
缥缈书本完成签到 ,获得积分10
30秒前
大灰狼发布了新的文献求助10
34秒前
负责以山完成签到 ,获得积分10
36秒前
曹国庆完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
45秒前
Tameiki完成签到 ,获得积分10
46秒前
onevip完成签到,获得积分0
47秒前
violetlishu完成签到 ,获得积分0
47秒前
Sunbrust完成签到 ,获得积分10
48秒前
傻瓜完成签到 ,获得积分10
48秒前
physicalproblem完成签到,获得积分10
50秒前
不安莺完成签到,获得积分10
50秒前
51秒前
时代炸蛋完成签到 ,获得积分10
52秒前
ioio完成签到 ,获得积分10
53秒前
hotcas完成签到,获得积分10
54秒前
潇洒的秋荷完成签到,获得积分10
54秒前
代扁扁完成签到 ,获得积分10
54秒前
钟小凯完成签到 ,获得积分10
54秒前
鹤川完成签到 ,获得积分10
56秒前
小阳阳5010完成签到 ,获得积分10
57秒前
58秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426936
求助须知:如何正确求助?哪些是违规求助? 4540484
关于积分的说明 14172261
捐赠科研通 4458420
什么是DOI,文献DOI怎么找? 2445015
邀请新用户注册赠送积分活动 1436024
关于科研通互助平台的介绍 1413506