PD47-07 THE STUDY OF AUTOMATIC RECOGNITION OF STONE COMPONENTS USING DIGITAL IMAGES FROM INTRAOPERATIVE FLEXIBLE URETEROSCOPY

输尿管镜检查 计算机科学 计算机视觉 人工智能 医学 计算机图形学(图像) 外科 输尿管
作者
Daming Luo,Bixiao Wang,Yubao Liu,Haifeng Song,Weiguo Hu,Jianxing Li
出处
期刊:The Journal of Urology [Ovid Technologies (Wolters Kluwer)]
卷期号:211 (5S)
标识
DOI:10.1097/01.ju.0001008652.62443.0a.07
摘要

You have accessJournal of UrologyStone Disease: Surgical Therapy (Including ESWL) IV (PD47)1 May 2024PD47-07 THE STUDY OF AUTOMATIC RECOGNITION OF STONE COMPONENTS USING DIGITAL IMAGES FROM INTRAOPERATIVE FLEXIBLE URETEROSCOPY Daxun Luo, Bixiao Wang, Yubao Liu, Haifeng Song, Weiguo Hu, and Jianxing Li Daxun LuoDaxun Luo , Bixiao WangBixiao Wang , Yubao LiuYubao Liu , Haifeng SongHaifeng Song , Weiguo HuWeiguo Hu , and Jianxing LiJianxing Li View All Author Informationhttps://doi.org/10.1097/01.JU.0001008652.62443.0a.07AboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract INTRODUCTION AND OBJECTIVE: This study aimed to investigate whether urinary stones can be predicted by convolutional neural network (CNN) using flexible ureteroscopic (fURS) images. METHODS: This study retrospectively used surgical videos of fURS performed by a single surgeon using single-use electronic ureteroscopes (Zebra) between 2022 and 2023 . Digital images of the surfaces of the stones before laser fragmentation and relatively intact cross-sections of stones were captured from the surgical video. The cases were categorized into five groups based on postoperative infrared spectroscopy analysis: calcium oxalate group, calcium oxalate mixed with uric acid group, calcium oxalate mixed with carbonate apatite group, struvite mixed with calcium oxalate mixed with carbonate apatite group, and a control group without stones. A total of 372 images were finally included and divided into training, validation and test sets. In the CNN model, ResNet-152-V2 model was used, and to enhance the network's generalization capability, data augmentation was applied to expand the training dataset. Only endoscopic digital images and stone classification data were input to achieve minimal supervised learning (Fig 1). RESULTS: There were 113 cases in the calcium oxalate group, 19 cases in the calcium oxalate mixed with uric acid group, 134 cases in the calcium oxalate mixed with carbonate apatite group, 19 cases in the struvite mixed with calcium oxalate mixed with carbonate apatite group, and 67 cases in the control group without stones. After whole training, the total accuracy was 98.0% on validation set. After training and validation, the model was tested using the test set consisting of 26 cases with a total accuracy of 80.8%. The recall, specificity and precision of the test result were 75%, 88.9%, and75% in calcium oxalate group, 50%, 100%, and 100% in the calcium oxalate mixed with uric acid group, 83.3%, 100%, and 100% in the calcium oxalate mixed with carbonate apatite group, and 100% for all three metrics in the struvite mixed with calcium oxalate mixed with carbonate apatite group. The control group without stones had values of 100%, 85%, and 66.7% for the three metrics, respectively. CONCLUSIONS: This preliminary study suggests that deep CNN is a promising method for identifying the composition of renal stones from endoscopic images obtained during surgery. Both pure and mixed stone compositions can be distinguished. Surface and cross-sectional images collected in a clinical setting analyzed by deep CNN can provide valuable information about the morphology of stones for computer-aided diagnosis. Download PPT Source of Funding: No source of funds © 2024 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetails Volume 211Issue 5SMay 2024Page: e982 Advertisement Copyright & Permissions© 2024 by American Urological Association Education and Research, Inc.Metrics Author Information Daxun Luo More articles by this author Bixiao Wang More articles by this author Yubao Liu More articles by this author Haifeng Song More articles by this author Weiguo Hu More articles by this author Jianxing Li More articles by this author Expand All Advertisement PDF downloadLoading ...

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上的菲鹰应助hkh采纳,获得10
刚刚
SciGPT应助Ll采纳,获得10
1秒前
buno应助懦弱的安珊采纳,获得10
1秒前
MADKAI发布了新的文献求助10
2秒前
happy完成签到,获得积分10
2秒前
丰知然完成签到,获得积分0
2秒前
马佳凯完成签到,获得积分20
3秒前
徐翩跹发布了新的文献求助10
3秒前
lan发布了新的文献求助10
3秒前
科研民工发布了新的文献求助10
3秒前
小二郎应助夏昼采纳,获得10
4秒前
香蕉觅云应助LIU采纳,获得10
4秒前
sunny完成签到,获得积分10
4秒前
5秒前
所所应助大意的安白采纳,获得10
5秒前
elena发布了新的文献求助10
5秒前
5秒前
Tal完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
Orange应助毕业就好采纳,获得10
7秒前
机灵画板发布了新的文献求助10
7秒前
8秒前
8秒前
桐桐应助Elaine采纳,获得10
8秒前
Ymj发布了新的文献求助10
9秒前
JamesPei应助yyf采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
enoot发布了新的文献求助10
10秒前
10秒前
盘尼西林完成签到 ,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740