National-scale digital soil mapping performances are related to covariates and sampling density: Lessons from France

数字土壤制图 土壤图 环境科学 土壤碳 协变量 土壤质地 淤泥 土壤水分 比例(比率) 地形 土壤科学 统计 地理 地图学 数学 古生物学 生物
作者
Azamat Suleymanov,Anne C Richer-De-Forges,Nicolas Saby,Dominique Arrouays,Manuel Martín,Antonio Bispo
出处
期刊:Geoderma Regional [Elsevier BV]
卷期号:37: e00801-e00801 被引量:1
标识
DOI:10.1016/j.geodrs.2024.e00801
摘要

Accurate soil property and class predictions through spatial modelling necessitate a thoughtful selection of explanatory variables and sample size, as their choice greatly impacts model performance. Within the framework of Global Soil Nutrient and Nutrient Budgets maps (GSNmap), the FAO Global Soil Partnership (GSP) launched a country-driven digital soil mapping (DSM) approach. The GSP asked the countries if they could implement the DSM prediction of ten soil properties, using their national point data and a set of widely available covariates (GSP_Cov). In this study, we examined the effect of including additional national-based covariates and soil observations on the performance of the prediction models using mainland France as a pilot. The learning soil dataset was based on a systematic 16-to-16 km grid. For a subset of soil properties, we also assessed using repeated k-fold cross-validation the effect of adding to this dataset many other irregularly spread measurements. The GSP_Cov included common widely available covariates that represented information about terrain, climate, and organisms. The second set of covariates consisted of the GSP_Cov, extended to extra covariates available at a national level, such as previously existing soil maps, geological maps, remote sensing products and others. Random Forest approach in combination with the Boruta selection method was employed for mapping ten soil properties: soil organic carbon (SOC), pH (water), total nitrogen (N), available phosphorus (P), available potassium (K), cation exchange capacity (CEC), bulk density (BD), and texture (clay, silt, and sand). The results revealed noteworthy enhancements in prediction performance for more than half of the properties, although, for some of them, the improvements were negligible. The most significant improvements were obtained for pH, CEC and texture, where geological variables and a previous pH map significantly contributed to the increase in accuracy. Adding numerous points (around 25,000) to the learning dataset improved the performance of soil particle-size fractions predictions. By broadening the spectrum of covariates and better covering the feature and geographical spaces considered in soil prediction models, this research underscores the importance of implementing a more diverse range of covariates at a national scale and of densifying soil information to enlarge the feature and geographical spaces of multidimensional soil/covariates combinations. This information should be taken into account in national and continental digital soil mapping endeavours.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
曹翔豪发布了新的文献求助10
2秒前
激动的访波完成签到,获得积分10
3秒前
trz817394发布了新的文献求助10
3秒前
呆鸥发布了新的文献求助30
4秒前
nuomi完成签到,获得积分10
4秒前
裴123发布了新的文献求助10
4秒前
乐乐应助ddrose采纳,获得10
5秒前
Li应助three采纳,获得10
5秒前
15966014069完成签到,获得积分10
5秒前
BLUZ完成签到,获得积分10
5秒前
6秒前
张小兔啊完成签到,获得积分10
6秒前
Bright24发布了新的文献求助10
7秒前
研友_Lmb15n完成签到,获得积分10
7秒前
甘甘发布了新的文献求助30
7秒前
呆萌的访冬完成签到,获得积分20
8秒前
Hello应助qia采纳,获得10
8秒前
无花果应助小东西725采纳,获得10
8秒前
8秒前
橘子小姐完成签到,获得积分10
9秒前
9秒前
10秒前
高贵咖啡发布了新的文献求助30
11秒前
晗晗完成签到,获得积分10
11秒前
nuomi发布了新的文献求助10
11秒前
Shawn完成签到,获得积分10
11秒前
13秒前
13秒前
rslysywd发布了新的文献求助10
13秒前
xxx发布了新的文献求助10
14秒前
无隅完成签到,获得积分10
14秒前
yaun完成签到,获得积分10
14秒前
14秒前
嘻嘻完成签到,获得积分10
14秒前
yangmi发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助50
15秒前
16秒前
琦琦发布了新的文献求助10
16秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4978009
求助须知:如何正确求助?哪些是违规求助? 4231065
关于积分的说明 13178283
捐赠科研通 4021754
什么是DOI,文献DOI怎么找? 2200400
邀请新用户注册赠送积分活动 1212909
关于科研通互助平台的介绍 1129176