National-scale digital soil mapping performances are related to covariates and sampling density: Lessons from France

数字土壤制图 土壤图 环境科学 土壤碳 协变量 土壤质地 淤泥 土壤水分 比例(比率) 地形 土壤科学 统计 地理 地图学 数学 古生物学 生物
作者
Azamat Suleymanov,Anne C Richer-De-Forges,Nicolas Saby,Dominique Arrouays,Manuel Martín,Antonio Bispo
出处
期刊:Geoderma Regional [Elsevier]
卷期号:37: e00801-e00801 被引量:1
标识
DOI:10.1016/j.geodrs.2024.e00801
摘要

Accurate soil property and class predictions through spatial modelling necessitate a thoughtful selection of explanatory variables and sample size, as their choice greatly impacts model performance. Within the framework of Global Soil Nutrient and Nutrient Budgets maps (GSNmap), the FAO Global Soil Partnership (GSP) launched a country-driven digital soil mapping (DSM) approach. The GSP asked the countries if they could implement the DSM prediction of ten soil properties, using their national point data and a set of widely available covariates (GSP_Cov). In this study, we examined the effect of including additional national-based covariates and soil observations on the performance of the prediction models using mainland France as a pilot. The learning soil dataset was based on a systematic 16-to-16 km grid. For a subset of soil properties, we also assessed using repeated k-fold cross-validation the effect of adding to this dataset many other irregularly spread measurements. The GSP_Cov included common widely available covariates that represented information about terrain, climate, and organisms. The second set of covariates consisted of the GSP_Cov, extended to extra covariates available at a national level, such as previously existing soil maps, geological maps, remote sensing products and others. Random Forest approach in combination with the Boruta selection method was employed for mapping ten soil properties: soil organic carbon (SOC), pH (water), total nitrogen (N), available phosphorus (P), available potassium (K), cation exchange capacity (CEC), bulk density (BD), and texture (clay, silt, and sand). The results revealed noteworthy enhancements in prediction performance for more than half of the properties, although, for some of them, the improvements were negligible. The most significant improvements were obtained for pH, CEC and texture, where geological variables and a previous pH map significantly contributed to the increase in accuracy. Adding numerous points (around 25,000) to the learning dataset improved the performance of soil particle-size fractions predictions. By broadening the spectrum of covariates and better covering the feature and geographical spaces considered in soil prediction models, this research underscores the importance of implementing a more diverse range of covariates at a national scale and of densifying soil information to enlarge the feature and geographical spaces of multidimensional soil/covariates combinations. This information should be taken into account in national and continental digital soil mapping endeavours.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小木虫发布了新的文献求助10
刚刚
1秒前
2秒前
天才小仙女完成签到,获得积分10
2秒前
4秒前
小胖子发布了新的文献求助10
4秒前
LDL完成签到 ,获得积分10
4秒前
5秒前
zac2023完成签到,获得积分10
6秒前
奥特曼发布了新的文献求助10
6秒前
Akim应助QinQin采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
科研通AI2S应助淡淡书白采纳,获得10
7秒前
8秒前
ayeben发布了新的文献求助10
8秒前
su完成签到,获得积分10
9秒前
9秒前
无极微光应助CICI采纳,获得20
11秒前
青云发布了新的文献求助10
11秒前
12秒前
柒玥发布了新的文献求助10
13秒前
13秒前
杨秋月完成签到,获得积分10
14秒前
16秒前
欣欣发布了新的文献求助10
16秒前
16秒前
16秒前
愉快的听枫完成签到,获得积分10
17秒前
QinQin发布了新的文献求助10
17秒前
19秒前
泽松应助科研通管家采纳,获得10
19秒前
wanci应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
Ky_Mac应助科研通管家采纳,获得30
19秒前
泽松应助科研通管家采纳,获得10
19秒前
蛇從革应助科研通管家采纳,获得30
19秒前
wanci应助科研通管家采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
泽松应助科研通管家采纳,获得10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742835
求助须知:如何正确求助?哪些是违规求助? 5410665
关于积分的说明 15345946
捐赠科研通 4883896
什么是DOI,文献DOI怎么找? 2625419
邀请新用户注册赠送积分活动 1574229
关于科研通互助平台的介绍 1531192