National-scale digital soil mapping performances are related to covariates and sampling density: Lessons from France

数字土壤制图 土壤图 环境科学 土壤碳 协变量 土壤质地 淤泥 土壤水分 比例(比率) 地形 土壤科学 统计 地理 地图学 数学 古生物学 生物
作者
Azamat Suleymanov,Anne C Richer-De-Forges,Nicolas Saby,Dominique Arrouays,Manuel Martín,Antonio Bispo
出处
期刊:Geoderma Regional [Elsevier]
卷期号:37: e00801-e00801 被引量:1
标识
DOI:10.1016/j.geodrs.2024.e00801
摘要

Accurate soil property and class predictions through spatial modelling necessitate a thoughtful selection of explanatory variables and sample size, as their choice greatly impacts model performance. Within the framework of Global Soil Nutrient and Nutrient Budgets maps (GSNmap), the FAO Global Soil Partnership (GSP) launched a country-driven digital soil mapping (DSM) approach. The GSP asked the countries if they could implement the DSM prediction of ten soil properties, using their national point data and a set of widely available covariates (GSP_Cov). In this study, we examined the effect of including additional national-based covariates and soil observations on the performance of the prediction models using mainland France as a pilot. The learning soil dataset was based on a systematic 16-to-16 km grid. For a subset of soil properties, we also assessed using repeated k-fold cross-validation the effect of adding to this dataset many other irregularly spread measurements. The GSP_Cov included common widely available covariates that represented information about terrain, climate, and organisms. The second set of covariates consisted of the GSP_Cov, extended to extra covariates available at a national level, such as previously existing soil maps, geological maps, remote sensing products and others. Random Forest approach in combination with the Boruta selection method was employed for mapping ten soil properties: soil organic carbon (SOC), pH (water), total nitrogen (N), available phosphorus (P), available potassium (K), cation exchange capacity (CEC), bulk density (BD), and texture (clay, silt, and sand). The results revealed noteworthy enhancements in prediction performance for more than half of the properties, although, for some of them, the improvements were negligible. The most significant improvements were obtained for pH, CEC and texture, where geological variables and a previous pH map significantly contributed to the increase in accuracy. Adding numerous points (around 25,000) to the learning dataset improved the performance of soil particle-size fractions predictions. By broadening the spectrum of covariates and better covering the feature and geographical spaces considered in soil prediction models, this research underscores the importance of implementing a more diverse range of covariates at a national scale and of densifying soil information to enlarge the feature and geographical spaces of multidimensional soil/covariates combinations. This information should be taken into account in national and continental digital soil mapping endeavours.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
geen完成签到,获得积分10
1秒前
BOSS徐应助东方耀采纳,获得10
1秒前
dongyu发布了新的文献求助10
2秒前
风起青禾完成签到,获得积分10
2秒前
执着以山完成签到,获得积分10
4秒前
4秒前
jz完成签到,获得积分10
5秒前
Hello完成签到,获得积分20
5秒前
6秒前
单纯夏云发布了新的文献求助10
6秒前
隐形蛋挞完成签到,获得积分20
7秒前
蓦然回首完成签到,获得积分10
7秒前
jing111完成签到,获得积分10
8秒前
66发布了新的文献求助10
8秒前
小丸子完成签到,获得积分10
9秒前
ardejiang发布了新的文献求助10
9秒前
10秒前
朋仔完成签到,获得积分10
10秒前
10秒前
苏书白应助when采纳,获得10
11秒前
之遥发布了新的文献求助10
11秒前
12秒前
从容芮应助LIU采纳,获得20
12秒前
laohu2发布了新的文献求助30
12秒前
幸福糖豆发布了新的文献求助10
13秒前
传奇3应助深渊与海采纳,获得10
15秒前
eleven发布了新的文献求助10
16秒前
汉堡包应助少熬夜采纳,获得10
16秒前
英俊的铭应助ardejiang采纳,获得10
17秒前
星辰大海应助科研小白采纳,获得10
17秒前
waq完成签到,获得积分20
18秒前
18秒前
18秒前
jry完成签到 ,获得积分10
19秒前
20秒前
良药发布了新的文献求助10
21秒前
21秒前
waq发布了新的文献求助30
22秒前
23秒前
居居应助chao采纳,获得10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154330
求助须知:如何正确求助?哪些是违规求助? 2805172
关于积分的说明 7863751
捐赠科研通 2463360
什么是DOI,文献DOI怎么找? 1311251
科研通“疑难数据库(出版商)”最低求助积分说明 629543
版权声明 601821