National-scale digital soil mapping performances are related to covariates and sampling density: Lessons from France

数字土壤制图 土壤图 环境科学 土壤碳 协变量 土壤质地 淤泥 土壤水分 比例(比率) 地形 土壤科学 统计 地理 地图学 数学 古生物学 生物
作者
Azamat Suleymanov,Anne C Richer-De-Forges,Nicolas Saby,Dominique Arrouays,Manuel Martín,Antonio Bispo
出处
期刊:Geoderma Regional [Elsevier BV]
卷期号:37: e00801-e00801 被引量:1
标识
DOI:10.1016/j.geodrs.2024.e00801
摘要

Accurate soil property and class predictions through spatial modelling necessitate a thoughtful selection of explanatory variables and sample size, as their choice greatly impacts model performance. Within the framework of Global Soil Nutrient and Nutrient Budgets maps (GSNmap), the FAO Global Soil Partnership (GSP) launched a country-driven digital soil mapping (DSM) approach. The GSP asked the countries if they could implement the DSM prediction of ten soil properties, using their national point data and a set of widely available covariates (GSP_Cov). In this study, we examined the effect of including additional national-based covariates and soil observations on the performance of the prediction models using mainland France as a pilot. The learning soil dataset was based on a systematic 16-to-16 km grid. For a subset of soil properties, we also assessed using repeated k-fold cross-validation the effect of adding to this dataset many other irregularly spread measurements. The GSP_Cov included common widely available covariates that represented information about terrain, climate, and organisms. The second set of covariates consisted of the GSP_Cov, extended to extra covariates available at a national level, such as previously existing soil maps, geological maps, remote sensing products and others. Random Forest approach in combination with the Boruta selection method was employed for mapping ten soil properties: soil organic carbon (SOC), pH (water), total nitrogen (N), available phosphorus (P), available potassium (K), cation exchange capacity (CEC), bulk density (BD), and texture (clay, silt, and sand). The results revealed noteworthy enhancements in prediction performance for more than half of the properties, although, for some of them, the improvements were negligible. The most significant improvements were obtained for pH, CEC and texture, where geological variables and a previous pH map significantly contributed to the increase in accuracy. Adding numerous points (around 25,000) to the learning dataset improved the performance of soil particle-size fractions predictions. By broadening the spectrum of covariates and better covering the feature and geographical spaces considered in soil prediction models, this research underscores the importance of implementing a more diverse range of covariates at a national scale and of densifying soil information to enlarge the feature and geographical spaces of multidimensional soil/covariates combinations. This information should be taken into account in national and continental digital soil mapping endeavours.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路过地球发布了新的文献求助10
刚刚
言庭兰玉完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
AI_Medical完成签到,获得积分10
2秒前
guoguo关注了科研通微信公众号
3秒前
Blue_Eyes发布了新的文献求助10
3秒前
Bazinga发布了新的文献求助10
3秒前
黄bb完成签到,获得积分10
3秒前
李爱国应助Hiccupsssss采纳,获得10
3秒前
3秒前
哆啦十七应助导师求放过采纳,获得10
4秒前
Howes91完成签到,获得积分10
4秒前
4秒前
小二郎应助忆仙姿采纳,获得10
4秒前
香蕉觅云应助贾千兰采纳,获得10
4秒前
4秒前
ysq发布了新的文献求助10
4秒前
4秒前
望天发布了新的文献求助10
4秒前
宁人发布了新的文献求助10
5秒前
落叶的季节完成签到,获得积分10
5秒前
6秒前
bkagyin应助妙aaa采纳,获得10
6秒前
Zhang发布了新的文献求助10
6秒前
6秒前
6秒前
li发布了新的文献求助10
6秒前
6秒前
6秒前
orixero应助自由思枫采纳,获得10
6秒前
7秒前
蓝色的云发布了新的文献求助30
7秒前
朴实的绮南完成签到,获得积分10
7秒前
领导范儿应助zhang-leo采纳,获得10
7秒前
斯文败类应助无限的兔子采纳,获得10
7秒前
薛小飞飞完成签到 ,获得积分10
7秒前
英俊的铭应助与卿123采纳,获得80
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330356
求助须知:如何正确求助?哪些是违规求助? 4469805
关于积分的说明 13910955
捐赠科研通 4363153
什么是DOI,文献DOI怎么找? 2396686
邀请新用户注册赠送积分活动 1390108
关于科研通互助平台的介绍 1360884