National-scale digital soil mapping performances are related to covariates and sampling density: Lessons from France

数字土壤制图 土壤图 环境科学 土壤碳 协变量 土壤质地 淤泥 土壤水分 比例(比率) 地形 土壤科学 统计 地理 地图学 数学 古生物学 生物
作者
Azamat Suleymanov,Anne C Richer-De-Forges,Nicolas Saby,Dominique Arrouays,Manuel Martín,Antonio Bispo
出处
期刊:Geoderma Regional [Elsevier]
卷期号:37: e00801-e00801 被引量:1
标识
DOI:10.1016/j.geodrs.2024.e00801
摘要

Accurate soil property and class predictions through spatial modelling necessitate a thoughtful selection of explanatory variables and sample size, as their choice greatly impacts model performance. Within the framework of Global Soil Nutrient and Nutrient Budgets maps (GSNmap), the FAO Global Soil Partnership (GSP) launched a country-driven digital soil mapping (DSM) approach. The GSP asked the countries if they could implement the DSM prediction of ten soil properties, using their national point data and a set of widely available covariates (GSP_Cov). In this study, we examined the effect of including additional national-based covariates and soil observations on the performance of the prediction models using mainland France as a pilot. The learning soil dataset was based on a systematic 16-to-16 km grid. For a subset of soil properties, we also assessed using repeated k-fold cross-validation the effect of adding to this dataset many other irregularly spread measurements. The GSP_Cov included common widely available covariates that represented information about terrain, climate, and organisms. The second set of covariates consisted of the GSP_Cov, extended to extra covariates available at a national level, such as previously existing soil maps, geological maps, remote sensing products and others. Random Forest approach in combination with the Boruta selection method was employed for mapping ten soil properties: soil organic carbon (SOC), pH (water), total nitrogen (N), available phosphorus (P), available potassium (K), cation exchange capacity (CEC), bulk density (BD), and texture (clay, silt, and sand). The results revealed noteworthy enhancements in prediction performance for more than half of the properties, although, for some of them, the improvements were negligible. The most significant improvements were obtained for pH, CEC and texture, where geological variables and a previous pH map significantly contributed to the increase in accuracy. Adding numerous points (around 25,000) to the learning dataset improved the performance of soil particle-size fractions predictions. By broadening the spectrum of covariates and better covering the feature and geographical spaces considered in soil prediction models, this research underscores the importance of implementing a more diverse range of covariates at a national scale and of densifying soil information to enlarge the feature and geographical spaces of multidimensional soil/covariates combinations. This information should be taken into account in national and continental digital soil mapping endeavours.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
端庄的毛豆完成签到,获得积分10
刚刚
遨游的人发布了新的文献求助10
刚刚
懵懂的晓曼完成签到,获得积分10
2秒前
灿灿完成签到 ,获得积分10
2秒前
3秒前
虾滑发布了新的文献求助20
3秒前
皮鲂完成签到,获得积分10
3秒前
小易发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
5秒前
万能图书馆应助小红采纳,获得10
5秒前
6秒前
6秒前
7秒前
舒心安柏完成签到 ,获得积分10
7秒前
7秒前
rainbow完成签到,获得积分10
7秒前
8秒前
8秒前
小南发布了新的文献求助10
8秒前
8秒前
8秒前
粒粒糖完成签到,获得积分10
8秒前
我是老大应助小易采纳,获得10
8秒前
9秒前
9秒前
lzz发布了新的文献求助10
9秒前
zz完成签到,获得积分20
10秒前
Cisplatin完成签到,获得积分20
10秒前
11秒前
lan发布了新的文献求助10
11秒前
十月_i发布了新的文献求助40
11秒前
11秒前
li发布了新的文献求助10
11秒前
11秒前
不吃香菜完成签到,获得积分10
12秒前
12秒前
阔达犀牛发布了新的文献求助10
12秒前
灵巧尔云完成签到,获得积分10
12秒前
慕青应助孙玉采纳,获得10
12秒前
无花果应助现实的井采纳,获得30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514286
求助须知:如何正确求助?哪些是违规求助? 4608193
关于积分的说明 14508898
捐赠科研通 4544028
什么是DOI,文献DOI怎么找? 2489864
邀请新用户注册赠送积分活动 1471799
关于科研通互助平台的介绍 1443710