National-scale digital soil mapping performances are related to covariates and sampling density: Lessons from France

数字土壤制图 土壤图 环境科学 土壤碳 协变量 土壤质地 淤泥 土壤水分 比例(比率) 地形 土壤科学 统计 地理 地图学 数学 生物 古生物学
作者
Azamat Suleymanov,Anne C Richer-De-Forges,Nicolas Saby,Dominique Arrouays,Manuel Martín,Antonio Bispo
出处
期刊:Geoderma Regional [Elsevier]
卷期号:37: e00801-e00801 被引量:1
标识
DOI:10.1016/j.geodrs.2024.e00801
摘要

Accurate soil property and class predictions through spatial modelling necessitate a thoughtful selection of explanatory variables and sample size, as their choice greatly impacts model performance. Within the framework of Global Soil Nutrient and Nutrient Budgets maps (GSNmap), the FAO Global Soil Partnership (GSP) launched a country-driven digital soil mapping (DSM) approach. The GSP asked the countries if they could implement the DSM prediction of ten soil properties, using their national point data and a set of widely available covariates (GSP_Cov). In this study, we examined the effect of including additional national-based covariates and soil observations on the performance of the prediction models using mainland France as a pilot. The learning soil dataset was based on a systematic 16-to-16 km grid. For a subset of soil properties, we also assessed using repeated k-fold cross-validation the effect of adding to this dataset many other irregularly spread measurements. The GSP_Cov included common widely available covariates that represented information about terrain, climate, and organisms. The second set of covariates consisted of the GSP_Cov, extended to extra covariates available at a national level, such as previously existing soil maps, geological maps, remote sensing products and others. Random Forest approach in combination with the Boruta selection method was employed for mapping ten soil properties: soil organic carbon (SOC), pH (water), total nitrogen (N), available phosphorus (P), available potassium (K), cation exchange capacity (CEC), bulk density (BD), and texture (clay, silt, and sand). The results revealed noteworthy enhancements in prediction performance for more than half of the properties, although, for some of them, the improvements were negligible. The most significant improvements were obtained for pH, CEC and texture, where geological variables and a previous pH map significantly contributed to the increase in accuracy. Adding numerous points (around 25,000) to the learning dataset improved the performance of soil particle-size fractions predictions. By broadening the spectrum of covariates and better covering the feature and geographical spaces considered in soil prediction models, this research underscores the importance of implementing a more diverse range of covariates at a national scale and of densifying soil information to enlarge the feature and geographical spaces of multidimensional soil/covariates combinations. This information should be taken into account in national and continental digital soil mapping endeavours.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
red发布了新的文献求助10
1秒前
行走人生发布了新的文献求助30
3秒前
乐乐应助灵珠学医采纳,获得10
3秒前
个性的荆发布了新的文献求助10
5秒前
科研通AI6应助郑木木采纳,获得10
6秒前
7秒前
科研通AI6应助寒冷的箴采纳,获得10
7秒前
8秒前
9秒前
YU完成签到,获得积分10
10秒前
NGC发布了新的文献求助10
10秒前
端庄的妙菱完成签到,获得积分10
10秒前
10秒前
12秒前
香菜芋头完成签到,获得积分10
12秒前
完美世界应助eijgnij采纳,获得10
12秒前
WB发布了新的文献求助10
13秒前
行走人生完成签到,获得积分10
13秒前
思源应助jagger采纳,获得10
14秒前
15秒前
YU发布了新的文献求助10
15秒前
xiaohui发布了新的文献求助10
15秒前
夹心发布了新的文献求助10
15秒前
刻苦的长颈鹿完成签到,获得积分10
16秒前
体贴雪碧发布了新的文献求助10
16秒前
一只猪完成签到,获得积分10
16秒前
17秒前
111完成签到,获得积分20
17秒前
Ava应助WB采纳,获得10
19秒前
20秒前
20秒前
魔幻诗兰完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
stellc完成签到,获得积分10
21秒前
21秒前
祝你开心发布了新的文献求助10
22秒前
追寻宛海完成签到,获得积分10
23秒前
KKK发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901