Fine Tuning LLM for Enterprise: Practical Guidelines and Recommendations

微调 过程管理 业务 计算机科学 物理 量子力学
作者
Mathav Raj J,Kushala VM,Harikrishna Warrier,Yogesh Gupta
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2404.10779
摘要

There is a compelling necessity from enterprises for fine tuning LLMs (Large Language Models) o get them trained on proprietary domain knowledge. The challenge is to imbibe the LLMs with domain specific knowledge using the most optimial resource and cost and in the best possible time. Many enterprises rely on RAG (Retrieval Augmented Generation) which does not need LLMs to be ine-tuned but they are limited by the quality of vector databases and their retrieval capabilities rather than the intrinsic capabilities of the LLMs themselves. In our current work we focus on fine tuning LLaMA, an open source LLM using proprietary documents and code from an enterprise repository and use the fine tuned models to evaluate the quality of responses. As part of this work, we aim to guide beginners on how to start with fine tuning an LLM for documentation and code by making educated guesses on size of GPU required and options that are available for formatting the data. We also propose pre processing recipes for both documentation and code to prepare dataset in different formats. The proposed methods of data preparation for document datasets are forming paragraph chunks, forming question and answer pairs and forming keyword and paragraph chunk pairs. For code dataset we propose forming summary and function pairs. Further, we qualitatively evaluate the results of the models for domain specific queries. Finally, we also propose practical guidelines and recommendations for fine tuning LLMs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李同学完成签到,获得积分10
刚刚
桐桐应助自信白易采纳,获得10
刚刚
娃娃发布了新的文献求助10
1秒前
jmwtong发布了新的文献求助10
1秒前
1秒前
2秒前
sssssnake应助Hosea采纳,获得10
2秒前
斯文败类应助houlingwei采纳,获得10
2秒前
简单画笔发布了新的文献求助10
3秒前
希望天下0贩的0应助shi采纳,获得10
3秒前
3秒前
3秒前
4秒前
hy发布了新的文献求助200
4秒前
ZW发布了新的文献求助10
4秒前
scvshty发布了新的文献求助10
5秒前
5秒前
GODHAO777发布了新的文献求助10
5秒前
我是老大应助顺利凌寒采纳,获得10
5秒前
pluto应助云術采纳,获得10
6秒前
airyyak发布了新的文献求助10
7秒前
7秒前
DQY发布了新的文献求助10
8秒前
8秒前
平常的鹤轩完成签到,获得积分10
8秒前
Danma完成签到,获得积分10
8秒前
8秒前
欣喜凌蝶发布了新的文献求助10
9秒前
江山木发布了新的文献求助10
10秒前
11秒前
大个应助cwm采纳,获得10
11秒前
11秒前
12秒前
Singularity应助简单画笔采纳,获得10
12秒前
12秒前
小芦苇完成签到,获得积分10
12秒前
12秒前
雨小科发布了新的文献求助10
12秒前
13秒前
丘比特应助黄111采纳,获得10
13秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217320
求助须知:如何正确求助?哪些是违规求助? 2866528
关于积分的说明 8152235
捐赠科研通 2533239
什么是DOI,文献DOI怎么找? 1366165
科研通“疑难数据库(出版商)”最低求助积分说明 644687
邀请新用户注册赠送积分活动 617684