Transformer Based Pluralistic Image Completion With Reduced Information Loss

编码器 计算机科学 变压器 增采样 量化(信号处理) 修补 人工智能 安全性令牌 像素 忠诚 计算机视觉 图像(数学) 物理 量子力学 电压 操作系统 电信 计算机安全
作者
Qiankun Liu,Yuqi Jiang,Zhentao Tan,Dongdong Chen,Ying Fu,Qi Chu,Gang Hua,Nenghai Yu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (10): 6652-6668 被引量:4
标识
DOI:10.1109/tpami.2024.3384406
摘要

Transformer based methods have achieved great success in image inpainting recently. However, we find that these solutions regard each pixel as a token, thus suffering from an information loss issue from two aspects: 1) They downsample the input image into much lower resolutions for efficiency consideration. 2) They quantize 256 3 RGB values to a small number (such as 512) of quantized color values. The indices of quantized pixels are used as tokens for the inputs and prediction targets of the transformer. To mitigate these issues, we propose a new transformer based framework called "PUT". Specifically, to avoid input downsampling while maintaining computation efficiency, we design a patch-based auto-encoder P-VQVAE. The encoder converts the masked image into non-overlapped patch tokens and the decoder recovers the masked regions from the inpainted tokens while keeping the unmasked regions unchanged. To eliminate the information loss caused by input quantization, an Un-quantized Transformer is applied. It directly takes features from the P-VQVAE encoder as input without any quantization and only regards the quantized tokens as prediction targets.Furthermore, to make the inpainting process more controllable, we introduce semantic and structural conditions as extra guidance. Extensive experiments show that our method greatly outperforms existing transformer based methods on image fidelity and achieves much higher diversity and better fidelity than state-of-the-art pluralistic inpainting methods on complex large-scale datasets ( e.g. , ImageNet). Codes are available at https://github.com/liuqk3/PUT .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yuan发布了新的文献求助10
1秒前
2秒前
cc完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
一一发布了新的文献求助10
3秒前
领导范儿应助Chridy采纳,获得10
3秒前
4秒前
凤凰山发布了新的文献求助10
4秒前
4秒前
孔雨珍发布了新的文献求助10
4秒前
淡定的思松应助通~采纳,获得10
5秒前
5秒前
明亮的八宝粥完成签到,获得积分10
5秒前
mayungui发布了新的文献求助10
5秒前
大型海狮完成签到,获得积分10
5秒前
搜集达人应助科研菜鸟采纳,获得10
6秒前
雨天有伞完成签到,获得积分10
6秒前
蕾子发布了新的文献求助10
6秒前
6秒前
zhui发布了新的文献求助10
6秒前
wanci应助jxcandice采纳,获得10
6秒前
factor发布了新的文献求助10
6秒前
7秒前
泊声发布了新的文献求助20
7秒前
narthon完成签到 ,获得积分10
7秒前
梦幻完成签到,获得积分10
7秒前
1604531786完成签到,获得积分10
7秒前
研友_LMNjkn发布了新的文献求助10
8秒前
xiao发布了新的文献求助10
8秒前
ww发布了新的文献求助10
8秒前
9秒前
Olsters发布了新的文献求助10
9秒前
深情安青应助该睡觉啦采纳,获得10
9秒前
9秒前
SEV完成签到,获得积分20
9秒前
愉快迎荷完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794