Transformer Based Pluralistic Image Completion With Reduced Information Loss

编码器 计算机科学 变压器 增采样 量化(信号处理) 修补 人工智能 安全性令牌 像素 忠诚 计算机视觉 图像(数学) 物理 量子力学 电压 操作系统 电信 计算机安全
作者
Qiankun Liu,Yuqi Jiang,Zhentao Tan,Dongdong Chen,Ying Fu,Qi Chu,Gang Hua,Nenghai Yu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (10): 6652-6668 被引量:4
标识
DOI:10.1109/tpami.2024.3384406
摘要

Transformer based methods have achieved great success in image inpainting recently. However, we find that these solutions regard each pixel as a token, thus suffering from an information loss issue from two aspects: 1) They downsample the input image into much lower resolutions for efficiency consideration. 2) They quantize 256 3 RGB values to a small number (such as 512) of quantized color values. The indices of quantized pixels are used as tokens for the inputs and prediction targets of the transformer. To mitigate these issues, we propose a new transformer based framework called "PUT". Specifically, to avoid input downsampling while maintaining computation efficiency, we design a patch-based auto-encoder P-VQVAE. The encoder converts the masked image into non-overlapped patch tokens and the decoder recovers the masked regions from the inpainted tokens while keeping the unmasked regions unchanged. To eliminate the information loss caused by input quantization, an Un-quantized Transformer is applied. It directly takes features from the P-VQVAE encoder as input without any quantization and only regards the quantized tokens as prediction targets.Furthermore, to make the inpainting process more controllable, we introduce semantic and structural conditions as extra guidance. Extensive experiments show that our method greatly outperforms existing transformer based methods on image fidelity and achieves much higher diversity and better fidelity than state-of-the-art pluralistic inpainting methods on complex large-scale datasets ( e.g. , ImageNet). Codes are available at https://github.com/liuqk3/PUT .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈哈完成签到,获得积分20
刚刚
无聊的寒烟完成签到,获得积分10
刚刚
三点水发布了新的文献求助10
刚刚
科研君不爱科研完成签到,获得积分10
1秒前
1秒前
zzz完成签到,获得积分10
2秒前
2秒前
2秒前
宫冷雁发布了新的文献求助10
3秒前
3秒前
科研小白发布了新的文献求助10
3秒前
kuka007发布了新的文献求助300
4秒前
4秒前
321发布了新的文献求助10
5秒前
大俊哥发布了新的文献求助10
5秒前
5秒前
顾茗完成签到,获得积分10
5秒前
爆米花应助Leeny采纳,获得10
6秒前
mingyue应助研友_8Y26PL采纳,获得10
6秒前
6秒前
6秒前
无端发布了新的文献求助10
7秒前
仙人殊恍惚应助李荷花采纳,获得10
7秒前
激昂的沛柔完成签到,获得积分10
7秒前
稳重孤丝发布了新的文献求助10
8秒前
kk发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
啦啦啦啦完成签到 ,获得积分20
9秒前
丁宇卓完成签到 ,获得积分10
10秒前
xx发布了新的文献求助10
10秒前
KIbhq发布了新的文献求助30
10秒前
houlingwei发布了新的文献求助10
10秒前
彭于晏应助三点水采纳,获得10
10秒前
眼睛大雨筠应助悠然xz采纳,获得10
10秒前
10秒前
13秒前
星星银河云朵和月亮完成签到,获得积分10
14秒前
土豆土豆发布了新的文献求助10
15秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217006
求助须知:如何正确求助?哪些是违规求助? 2866175
关于积分的说明 8150709
捐赠科研通 2532816
什么是DOI,文献DOI怎么找? 1365874
科研通“疑难数据库(出版商)”最低求助积分说明 644635
邀请新用户注册赠送积分活动 617556