亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transformer Based Pluralistic Image Completion With Reduced Information Loss

编码器 计算机科学 变压器 增采样 量化(信号处理) 修补 人工智能 安全性令牌 像素 忠诚 计算机视觉 图像(数学) 物理 量子力学 电压 操作系统 电信 计算机安全
作者
Qiankun Liu,Yuqi Jiang,Zhentao Tan,Dongdong Chen,Ying Fu,Qi Chu,Gang Hua,Nenghai Yu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (10): 6652-6668 被引量:4
标识
DOI:10.1109/tpami.2024.3384406
摘要

Transformer based methods have achieved great success in image inpainting recently. However, we find that these solutions regard each pixel as a token, thus suffering from an information loss issue from two aspects: 1) They downsample the input image into much lower resolutions for efficiency consideration. 2) They quantize 256 3 RGB values to a small number (such as 512) of quantized color values. The indices of quantized pixels are used as tokens for the inputs and prediction targets of the transformer. To mitigate these issues, we propose a new transformer based framework called "PUT". Specifically, to avoid input downsampling while maintaining computation efficiency, we design a patch-based auto-encoder P-VQVAE. The encoder converts the masked image into non-overlapped patch tokens and the decoder recovers the masked regions from the inpainted tokens while keeping the unmasked regions unchanged. To eliminate the information loss caused by input quantization, an Un-quantized Transformer is applied. It directly takes features from the P-VQVAE encoder as input without any quantization and only regards the quantized tokens as prediction targets.Furthermore, to make the inpainting process more controllable, we introduce semantic and structural conditions as extra guidance. Extensive experiments show that our method greatly outperforms existing transformer based methods on image fidelity and achieves much higher diversity and better fidelity than state-of-the-art pluralistic inpainting methods on complex large-scale datasets ( e.g. , ImageNet). Codes are available at https://github.com/liuqk3/PUT .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
Ciil完成签到,获得积分10
9秒前
虞美人发布了新的文献求助10
11秒前
16秒前
友好刺猬完成签到,获得积分10
22秒前
默默白桃完成签到 ,获得积分10
32秒前
35秒前
36秒前
39秒前
深情安青应助科研通管家采纳,获得10
39秒前
40秒前
传奇3应助科研通管家采纳,获得30
40秒前
40秒前
XieQinxie发布了新的文献求助10
40秒前
随便发布了新的文献求助10
40秒前
王某人完成签到 ,获得积分10
46秒前
大个应助会飞的鱼采纳,获得10
46秒前
CyrusSo524完成签到,获得积分10
57秒前
大模型应助随便采纳,获得10
59秒前
hyl-tcm完成签到 ,获得积分10
1分钟前
XieQinxie完成签到,获得积分10
1分钟前
天天好心覃完成签到 ,获得积分10
1分钟前
1分钟前
yuwen发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
yn发布了新的文献求助10
1分钟前
深情安青应助包容楷瑞采纳,获得10
1分钟前
1分钟前
ding应助hehehe采纳,获得10
1分钟前
www完成签到,获得积分20
1分钟前
科研通AI2S应助Rin333采纳,获得10
1分钟前
www发布了新的文献求助10
1分钟前
Jasper应助重要的夏烟采纳,获得10
1分钟前
1分钟前
1分钟前
大模型应助李孟德对面采纳,获得30
1分钟前
1分钟前
hehehe发布了新的文献求助10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968325
求助须知:如何正确求助?哪些是违规求助? 3513238
关于积分的说明 11166853
捐赠科研通 3248498
什么是DOI,文献DOI怎么找? 1794268
邀请新用户注册赠送积分活动 874964
科研通“疑难数据库(出版商)”最低求助积分说明 804629