Transformer Based Pluralistic Image Completion With Reduced Information Loss

编码器 计算机科学 变压器 增采样 量化(信号处理) 修补 人工智能 安全性令牌 像素 忠诚 计算机视觉 图像(数学) 物理 量子力学 电压 操作系统 电信 计算机安全
作者
Qiankun Liu,Yuqi Jiang,Zhentao Tan,Dongdong Chen,Ying Fu,Qi Chu,Gang Hua,Nenghai Yu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (10): 6652-6668 被引量:4
标识
DOI:10.1109/tpami.2024.3384406
摘要

Transformer based methods have achieved great success in image inpainting recently. However, we find that these solutions regard each pixel as a token, thus suffering from an information loss issue from two aspects: 1) They downsample the input image into much lower resolutions for efficiency consideration. 2) They quantize 256 3 RGB values to a small number (such as 512) of quantized color values. The indices of quantized pixels are used as tokens for the inputs and prediction targets of the transformer. To mitigate these issues, we propose a new transformer based framework called "PUT". Specifically, to avoid input downsampling while maintaining computation efficiency, we design a patch-based auto-encoder P-VQVAE. The encoder converts the masked image into non-overlapped patch tokens and the decoder recovers the masked regions from the inpainted tokens while keeping the unmasked regions unchanged. To eliminate the information loss caused by input quantization, an Un-quantized Transformer is applied. It directly takes features from the P-VQVAE encoder as input without any quantization and only regards the quantized tokens as prediction targets.Furthermore, to make the inpainting process more controllable, we introduce semantic and structural conditions as extra guidance. Extensive experiments show that our method greatly outperforms existing transformer based methods on image fidelity and achieves much higher diversity and better fidelity than state-of-the-art pluralistic inpainting methods on complex large-scale datasets ( e.g. , ImageNet). Codes are available at https://github.com/liuqk3/PUT .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pursue发布了新的文献求助10
刚刚
1秒前
哈哈哈哈发布了新的文献求助10
1秒前
1秒前
浮游应助Annnnnn采纳,获得10
1秒前
hehsk发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
灵运完成签到,获得积分10
3秒前
南宫誉发布了新的文献求助10
3秒前
3秒前
3秒前
玄天明月发布了新的文献求助10
4秒前
puzhongjiMiQ发布了新的文献求助10
4秒前
21完成签到,获得积分10
4秒前
000发布了新的文献求助10
4秒前
路纹婷完成签到,获得积分10
4秒前
4秒前
思源应助小艾采纳,获得10
5秒前
5秒前
53完成签到,获得积分10
5秒前
FashionBoy应助苗儿采纳,获得10
6秒前
陆程文发布了新的文献求助10
6秒前
sonia发布了新的文献求助10
6秒前
zhaolee完成签到 ,获得积分10
7秒前
小蘑菇应助hehsk采纳,获得10
7秒前
lgold完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
orixero应助阳阳采纳,获得10
8秒前
8秒前
8秒前
8秒前
暖暖完成签到,获得积分10
9秒前
苹果似狮完成签到,获得积分10
9秒前
000完成签到,获得积分10
10秒前
激流勇进wb完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545721
求助须知:如何正确求助?哪些是违规求助? 4631761
关于积分的说明 14622099
捐赠科研通 4573427
什么是DOI,文献DOI怎么找? 2507524
邀请新用户注册赠送积分活动 1484223
关于科研通互助平台的介绍 1455530