Design strategies and energy storage mechanisms of MOF-based aqueous zinc ion battery cathode materials

材料科学 阴极 储能 电池(电) 电化学储能 可再生能源 工艺工程 纳米技术 系统工程 超级电容器 电化学 电气工程 电极 工程类 功率(物理) 化学 物理 量子力学 物理化学
作者
Daijie Zhang,Weijuan Wang,Sumin Li,Xiaojuan Shen,Hui Xu
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:69: 103436-103436 被引量:5
标识
DOI:10.1016/j.ensm.2024.103436
摘要

As the world strives for carbon neutrality, advancing rechargeable battery technology for the effective storage of renewable energy is paramount. Among various options, aqueous zinc ion batteries (AZIBs) stand out, favored for their high safety and cost-efficiency. A key aspect of the technological evolution of AZIBs lies in the development of advanced cathode materials with high energy and power densities. Metal-organic frameworks (MOFs) and their derived materials, with their unique benefits in energy storage, are propelling the search for superior cathode materials for AZIBs. Despite the substantial progress achieved by researchers in recent years, the field lacks a clear guide for the design principles of MOFs and their derived materials as cathode materials for AZIBs, as well as a comprehensive understanding of their energy storage mechanisms. This review captures the latest breakthroughs in MOF-based cathode materials for AZIBs. We begin by systematically organizing and classifying the various design strategies employed in the development of both pristine MOFs and MOF-derived cathode materials. An exhaustive and distinctive overview of their energy storage mechanisms is then presented, offering insights into the intricate processes that govern the performance of these materials in AZIB systems. Further, we provide an extensive summary of the indispensable characterization techniques that are crucial for the investigation of these energy storage mechanisms. In concluding, we discuss the present challenges and future research and development prospects in this field. Our goal is to provide innovative insights for advancing MOF-based cathode materials, fostering deeper understanding and supporting the quest for sustainable energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
武雨寒完成签到,获得积分20
1秒前
武雨寒发布了新的文献求助10
4秒前
Haiverxin完成签到,获得积分10
5秒前
7秒前
顺心的猪完成签到 ,获得积分10
8秒前
科研通AI2S应助罗是一采纳,获得10
8秒前
wpie99完成签到,获得积分10
10秒前
11秒前
13秒前
16秒前
Owen应助DianaRang采纳,获得30
17秒前
罗是一完成签到,获得积分10
20秒前
科研通AI2S应助三里清风采纳,获得10
21秒前
22秒前
23秒前
23秒前
24秒前
24秒前
小娜娜发布了新的文献求助10
25秒前
jie发布了新的文献求助10
26秒前
28秒前
31秒前
毛毛完成签到,获得积分10
31秒前
31秒前
33秒前
rl完成签到,获得积分10
34秒前
666666666666666完成签到,获得积分10
36秒前
归零儿完成签到,获得积分10
37秒前
天真的皓轩完成签到,获得积分10
37秒前
勤恳函完成签到,获得积分10
37秒前
古蓦然完成签到,获得积分10
37秒前
39秒前
40秒前
一二发布了新的文献求助10
40秒前
现实的筮完成签到,获得积分10
40秒前
44秒前
44秒前
上官若男应助耿继生采纳,获得10
44秒前
彭于晏应助jie采纳,获得10
46秒前
凡仔发布了新的文献求助10
48秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134988
求助须知:如何正确求助?哪些是违规求助? 2785963
关于积分的说明 7774538
捐赠科研通 2441779
什么是DOI,文献DOI怎么找? 1298177
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825