Efficient activation of periodate using MnFe2O4/BC composite for removal of organic contaminants: Performance and mechanism

高碘酸盐 复合数 机制(生物学) 污染 化学 化学工程 环境化学 废物管理 材料科学 有机化学 复合材料 工程类 生物 生态学 认识论 哲学
作者
Jie Huang,Haihang Tong,Dezhi Shi,Shuo Xu,Xianyi Wen,Kun Fu,Hui Xie,Huayi Cai,Jiayu Liu,Shiyi Tang,Zhiwei Wang
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:345: 127404-127404 被引量:7
标识
DOI:10.1016/j.seppur.2024.127404
摘要

The periodate (PI)-based advanced oxidation process (AOP) is an economical and energy-saving method for remediating water by degrading pollutants. An efficient system for PI activation was developed by loading manganese ferrite spinel (MnFe2O4) on biochar (BC) through a facile method, affording a metal-oxide MnFe2O4/BC composite catalyst. The developed system demonstrated significant effectiveness in eliminating various organic pollutants, particularly achieving high removal (5.26 and 2.83 times that of biochar and MnFe2O4, respectively) and mineralization (49.7 %) of the model pollutant tetracycline hydrochloride (TC) within 30 min. The system exhibited outstanding catalytic performance under various environmental conditions (pH, inorganic salts, humic acid, and real water bodies), as evidenced by quenching experiments and electron paramagnetic resonance (EPR) studies, proving that superoxide radicals (O2•-) are the main reactive species for TC degradation in the reaction system, in addition to singlet oxygen (1O2), iodyl radicals (IO3•) and hydroxyl radicals (•OH). Potential pathways for TC degradation in this system were revealed based on density functional theory (DFT) and the ecological toxicity of the intermediates was analyzed through quantitative structure–activity relationship (QSAR) assessment. Analysis of the magnetic hysteresis and cycling stability demonstrated that the composites were stable and could be recycled by applying a magnetic field. This work opens a new pathway for designing efficient PI activators for the selective oxidation of organic pollutants and highlights the potential application of this system in practical wastewater treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助qym采纳,获得10
刚刚
风趣的爆米花完成签到,获得积分20
刚刚
韭菜发布了新的文献求助10
刚刚
刚刚
刚刚
yzxzdm完成签到 ,获得积分10
1秒前
小破仁666发布了新的文献求助10
1秒前
1秒前
英姑应助优秀的逊采纳,获得10
2秒前
ccc完成签到,获得积分20
2秒前
2秒前
2秒前
小二郎应助诗谙采纳,获得10
2秒前
2秒前
2秒前
圣晟胜发布了新的文献求助10
3秒前
3秒前
等待幼荷完成签到,获得积分10
3秒前
笑言相欢ZMN完成签到,获得积分20
3秒前
3秒前
Eric发布了新的文献求助10
3秒前
gaos发布了新的文献求助10
4秒前
4秒前
4秒前
ipeakkka发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
小小飞发布了新的文献求助10
6秒前
JamesPei应助韭菜采纳,获得10
7秒前
开开心心的开心应助wahaha采纳,获得10
7秒前
善学以致用应助YE采纳,获得10
7秒前
7秒前
7秒前
木子发布了新的文献求助10
7秒前
义气绿柳发布了新的文献求助10
8秒前
xioatudou完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740