清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and external validation of a multimodal integrated feature neural network (MIFNN) for the diagnosis of malignancy in small pulmonary nodules (≤10 mm)

恶性肿瘤 人工神经网络 特征(语言学) 放射科 医学 计算机科学 人工智能 模式识别(心理学) 病理 语言学 哲学
作者
Runhuang Yang,Yanfei Zhang,Weiming Li,Qiang Li,Xiangtong Liu,Feng Zhang,Zhigang Liang,Jian Huang,Xia Li,Lixin Tao,Xiuhua Guo
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (4): 045008-045008 被引量:1
标识
DOI:10.1088/2057-1976/ad449a
摘要

Abstract Objectives . Current lung cancer screening protocols primarily evaluate pulmonary nodules, yet often neglect the malignancy risk associated with small nodules (≤10 mm). This study endeavors to optimize the management of pulmonary nodules in this population by devising and externally validating a Multimodal Integrated Feature Neural Network (MIFNN). We hypothesize that the fusion of deep learning algorithms with morphological nodule features will significantly enhance diagnostic accuracy. Materials and Methods . Data were retrospectively collected from the Lung Nodule Analysis 2016 (LUNA16) dataset and four local centers in Beijing, China. The study includes patients with small pulmonary nodules (≤10 mm). We developed a neural network, termed MIFNN, that synergistically combines computed tomography (CT) images and morphological characteristics of pulmonary nodules. The network is designed to acquire clinically relevant deep learning features, thereby elevating the diagnostic accuracy of existing models. Importantly, the network’s simple architecture and use of standard screening variables enable seamless integration into standard lung cancer screening protocols. Results . In summary, the study analyzed a total of 382 small pulmonary nodules (85 malignant) from the LUNA16 dataset and 101 small pulmonary nodules (33 malignant) obtained from four specialized centers in Beijing, China, for model training and external validation. Both internal and external validation metrics indicate that the MIFNN significantly surpasses extant state-of-the-art models, achieving an internal area under the curve (AUC) of 0.890 (95% CI: 0.848–0.932) and an external AUC of 0.843 (95% CI: 0.784–0.891). Conclusion . The MIFNN model significantly enhances the diagnostic accuracy of small pulmonary nodules, outperforming existing benchmarks by Zhang et al with a 6.34% improvement for nodules less than 10 mm. Leveraging advanced integration techniques for imaging and clinical data, MIFNN increases the efficiency of lung cancer screenings and optimizes nodule management, potentially reducing false positives and unnecessary biopsies. Clinical relevance statement . The MIFNN enhances lung cancer screening efficiency and patient management for small pulmonary nodules, while seamlessly integrating into existing workflows due to its reliance on standard screening variables.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轴承完成签到 ,获得积分10
3秒前
11完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
17秒前
长不大的幼稚完成签到 ,获得积分10
36秒前
江夏完成签到,获得积分10
37秒前
我很厉害的1q完成签到,获得积分10
44秒前
游泳池完成签到,获得积分10
47秒前
Alisha完成签到,获得积分10
49秒前
qianzhihe2完成签到,获得积分10
51秒前
iman完成签到,获得积分10
1分钟前
慕青应助风中的丝袜采纳,获得10
1分钟前
星辰大海应助风中的丝袜采纳,获得30
1分钟前
LRR完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
所所应助风中的丝袜采纳,获得30
1分钟前
1分钟前
FashionBoy应助风中的丝袜采纳,获得10
1分钟前
打打应助风中的丝袜采纳,获得10
1分钟前
1分钟前
星辰大海应助风中的丝袜采纳,获得10
1分钟前
李健应助风中的丝袜采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
如意2023完成签到 ,获得积分10
1分钟前
xiezizai完成签到,获得积分10
2分钟前
丘比特应助风中的丝袜采纳,获得10
2分钟前
打打应助风中的丝袜采纳,获得10
2分钟前
2分钟前
小蘑菇应助风中的丝袜采纳,获得10
2分钟前
lizishu应助风中的丝袜采纳,获得30
2分钟前
2分钟前
2分钟前
科目三应助风中的丝袜采纳,获得30
2分钟前
cnspower应助风中的丝袜采纳,获得30
2分钟前
lizishu应助风中的丝袜采纳,获得30
2分钟前
YiLinn完成签到 ,获得积分10
3分钟前
3分钟前
QIANGYI完成签到 ,获得积分10
3分钟前
Ava应助Logan采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5823049
求助须知:如何正确求助?哪些是违规求助? 5990315
关于积分的说明 15559719
捐赠科研通 4944058
什么是DOI,文献DOI怎么找? 2663257
邀请新用户注册赠送积分活动 1609293
关于科研通互助平台的介绍 1564238