Development and external validation of a multimodal integrated feature neural network (MIFNN) for the diagnosis of malignancy in small pulmonary nodules (≤10 mm)

恶性肿瘤 人工神经网络 特征(语言学) 放射科 医学 计算机科学 人工智能 模式识别(心理学) 病理 语言学 哲学
作者
Runhuang Yang,Yanfei Zhang,Weiming Li,Qiang Li,Xiangtong Liu,Feng Zhang,Zhigang Liang,Jian Huang,Xia Li,Lixin Tao,Xiuhua Guo
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (4): 045008-045008 被引量:1
标识
DOI:10.1088/2057-1976/ad449a
摘要

Abstract Objectives . Current lung cancer screening protocols primarily evaluate pulmonary nodules, yet often neglect the malignancy risk associated with small nodules (≤10 mm). This study endeavors to optimize the management of pulmonary nodules in this population by devising and externally validating a Multimodal Integrated Feature Neural Network (MIFNN). We hypothesize that the fusion of deep learning algorithms with morphological nodule features will significantly enhance diagnostic accuracy. Materials and Methods . Data were retrospectively collected from the Lung Nodule Analysis 2016 (LUNA16) dataset and four local centers in Beijing, China. The study includes patients with small pulmonary nodules (≤10 mm). We developed a neural network, termed MIFNN, that synergistically combines computed tomography (CT) images and morphological characteristics of pulmonary nodules. The network is designed to acquire clinically relevant deep learning features, thereby elevating the diagnostic accuracy of existing models. Importantly, the network’s simple architecture and use of standard screening variables enable seamless integration into standard lung cancer screening protocols. Results . In summary, the study analyzed a total of 382 small pulmonary nodules (85 malignant) from the LUNA16 dataset and 101 small pulmonary nodules (33 malignant) obtained from four specialized centers in Beijing, China, for model training and external validation. Both internal and external validation metrics indicate that the MIFNN significantly surpasses extant state-of-the-art models, achieving an internal area under the curve (AUC) of 0.890 (95% CI: 0.848–0.932) and an external AUC of 0.843 (95% CI: 0.784–0.891). Conclusion . The MIFNN model significantly enhances the diagnostic accuracy of small pulmonary nodules, outperforming existing benchmarks by Zhang et al with a 6.34% improvement for nodules less than 10 mm. Leveraging advanced integration techniques for imaging and clinical data, MIFNN increases the efficiency of lung cancer screenings and optimizes nodule management, potentially reducing false positives and unnecessary biopsies. Clinical relevance statement . The MIFNN enhances lung cancer screening efficiency and patient management for small pulmonary nodules, while seamlessly integrating into existing workflows due to its reliance on standard screening variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yk完成签到 ,获得积分10
2秒前
6秒前
美满谷梦完成签到 ,获得积分10
15秒前
要笑cc完成签到,获得积分10
15秒前
Yolanda完成签到 ,获得积分10
15秒前
宣宣宣0733完成签到,获得积分10
17秒前
我爱康康文献完成签到 ,获得积分10
18秒前
胡质斌完成签到,获得积分10
19秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
西扬完成签到 ,获得积分10
25秒前
小王完成签到 ,获得积分10
33秒前
ghost完成签到 ,获得积分10
42秒前
汉堡包应助anlikek采纳,获得10
56秒前
落忆完成签到 ,获得积分10
58秒前
超帅雨柏完成签到 ,获得积分10
59秒前
1分钟前
断章完成签到 ,获得积分10
1分钟前
含糊的大侠完成签到 ,获得积分10
1分钟前
1分钟前
anlikek发布了新的文献求助10
1分钟前
平常的毛豆应助anlikek采纳,获得10
1分钟前
彩色的冷梅完成签到 ,获得积分10
1分钟前
Singularity完成签到,获得积分0
1分钟前
知行者完成签到 ,获得积分10
1分钟前
czj完成签到 ,获得积分10
1分钟前
1分钟前
Stone发布了新的文献求助10
1分钟前
1分钟前
hhh2018687完成签到,获得积分10
1分钟前
lkc完成签到,获得积分10
2分钟前
纪外绣完成签到,获得积分10
2分钟前
wuludie应助科研通管家采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
anlikek发布了新的文献求助150
2分钟前
眼睛大谷蕊完成签到 ,获得积分10
2分钟前
fufufu123完成签到 ,获得积分10
2分钟前
单小芫完成签到 ,获得积分10
2分钟前
余悸完成签到,获得积分10
3分钟前
风秋杨完成签到 ,获得积分10
3分钟前
负责的流沙完成签到 ,获得积分10
3分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268795
求助须知:如何正确求助?哪些是违规求助? 2908247
关于积分的说明 8345023
捐赠科研通 2578590
什么是DOI,文献DOI怎么找? 1402210
科研通“疑难数据库(出版商)”最低求助积分说明 655365
邀请新用户注册赠送积分活动 634497