Do we really need machine learning interatomic potentials for modeling amorphous metal oxides?Case study on amorphous alumina by recycling an existing ab initio database.

无定形固体 从头算 原子间势 材料科学 非晶态金属 金属 数据库 化学物理 计算化学 计算机科学 冶金 化学 分子动力学 结晶学 有机化学
作者
Simon Gramatte,Vladyslav Turlo,O. Politano
出处
期刊:Modelling and Simulation in Materials Science and Engineering [IOP Publishing]
卷期号:32 (4): 045010-045010
标识
DOI:10.1088/1361-651x/ad39ff
摘要

Abstract In this study, we critically evaluate the performance of various interatomic potentials/force fields against a benchmark ab initio database for bulk amorphous alumina. The interatomic potentials tested in this work include all major fixed charge and variable charge models developed to date for alumina. Additionally, we introduce a novel machine learning interatomic potential constructed using the NequIP framework based on graph neural networks. Our findings reveal that the fixed-charge potential developed by Matsui and coworkers offers the most optimal balance between computational efficiency and agreement with ab initio data for stoichiometric alumina. Such balance cannot be provided by machine learning potentials when comparing performance with Matsui potential on the same computing infrastructure using a single Graphical Processing Unit. For non-stoichiometric alumina, the variable charge potentials, in particular ReaxFF, exhibit an impressive concordance with density functional theory calculations. However, our NequIP potentials trained on a small fraction of the ab initio database easily surpass ReaxFF in terms of both accuracy and computational performance. This is achieved without large overhead in terms of potential fitting and fine-tuning, often associated with the classical potential development process as well as training of standard deep neural network potentials, thus advocating for the use of data-efficient machine learning potentials like NequIP for complex cases of non-stoichiometric amorphous oxides.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Eve丶Paopaoxuan应助sxy0604采纳,获得10
刚刚
自然的汝燕完成签到 ,获得积分10
刚刚
changli发布了新的文献求助10
1秒前
hanyang965发布了新的文献求助10
1秒前
homo发布了新的文献求助10
1秒前
2秒前
小蘑菇应助乔心采纳,获得10
3秒前
在水一方应助小杨杨采纳,获得10
4秒前
小鱼儿完成签到,获得积分10
5秒前
6秒前
海棠先雪发布了新的文献求助10
6秒前
橄榄绿发布了新的文献求助10
6秒前
7秒前
8秒前
所所应助Jtiger采纳,获得10
8秒前
8秒前
onecloudhere完成签到,获得积分10
8秒前
小鹅发布了新的文献求助30
10秒前
10秒前
细腻的沂完成签到 ,获得积分10
10秒前
冰中完成签到,获得积分10
10秒前
隐形曼青应助孙明丽采纳,获得10
10秒前
科研通AI5应助凯哥采纳,获得10
10秒前
wyi完成签到,获得积分10
12秒前
冰中发布了新的文献求助10
12秒前
13秒前
鲲鹏戏龙发布了新的文献求助30
13秒前
13秒前
13秒前
学术小菜鸡完成签到,获得积分20
14秒前
知黑守白发布了新的文献求助10
14秒前
NexusExplorer应助是小王ya采纳,获得10
14秒前
15秒前
15秒前
anthea发布了新的文献求助20
15秒前
充电宝应助kimihee采纳,获得10
16秒前
CipherSage应助古炮采纳,获得10
16秒前
scott910806完成签到,获得积分10
17秒前
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476893
求助须知:如何正确求助?哪些是违规求助? 3068470
关于积分的说明 9107919
捐赠科研通 2759871
什么是DOI,文献DOI怎么找? 1514435
邀请新用户注册赠送积分活动 700240
科研通“疑难数据库(出版商)”最低求助积分说明 699412