Hyperspectral imaging combined with GA‐SVM for maize variety identification

高光谱成像 鉴定(生物学) 支持向量机 多样性(控制论) 人工智能 模式识别(心理学) 计算机科学 计算生物学 生物 植物
作者
Fu Zhang,Sheng Wang,Fangyuan Zhang,Ying Xiong,Xinyue Wang,Shaukat Ali,Yakun Zhang,Sanling Fu
出处
期刊:Food Science and Nutrition [Wiley]
卷期号:12 (5): 3177-3187 被引量:2
标识
DOI:10.1002/fsn3.3984
摘要

Abstract The demand for identification of maize varieties has increased dramatically due to the phenomenon of mixed seeds and inferior varieties pretending to be high‐quality varieties continuing to occur. It is urgent to solve the problem of efficient and accurate identification of maize varieties. A hyperspectral image acquisition system was used to acquire images of maize seeds. Regions of interest (ROI) with an embryo size of 10 × 10 pixel were extracted, and the average spectral information in the range of 949.43–1709.49 nm was intercepted for the subsequent study in order to eliminate random noise at both ends. Savitzky–Golay (SG) smoothing algorithm and multiple scattering correction (MSC) were used to pretreat the full‐band spectrum. The feature wavelengths were screened by successive projection algorithms (SPA), competitive adaptive reweighted sampling (CARS) single screening, and two combinations of CARS‐SPA and CARS + SPA, respectively. Support vector machines (SVMs) and models optimized based on genetic algorithm (GA), particle swarm optimization (PSO) were established by using full bands (FB) and feature bands as the model input. The results showed that the MSC‐(CARS‐SPA)‐GA‐SVM model had the best performance with 93.00% of the test set accuracy, 8 feature variables, and a running time of 24.45 s. MSC pretreatment can effectively eliminate the scattering effect of spectral data, and the feature wavelengths extracted by CARS‐SPA can represent all wavelength information. The study proved that hyperspectral imaging combined with GA‐SVM can realize the identification of maize varieties, which provided a theoretical basis for maize variety classification and authenticity identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ry发布了新的文献求助30
刚刚
马户的崛起完成签到,获得积分10
刚刚
1秒前
崩溃发布了新的文献求助20
1秒前
1秒前
1秒前
1秒前
Hello应助茜茜采纳,获得10
1秒前
ZXneuro完成签到,获得积分10
1秒前
深情安青应助echo采纳,获得10
1秒前
芜湖发布了新的文献求助10
2秒前
2秒前
2秒前
活泼半凡完成签到 ,获得积分10
2秒前
东郭秋凌完成签到,获得积分10
3秒前
完美的彩虹完成签到 ,获得积分10
3秒前
陈住气完成签到,获得积分10
3秒前
ly发布了新的文献求助10
3秒前
3秒前
彭于彦祖应助独特冰安采纳,获得100
4秒前
4秒前
5秒前
大卫在分享应助GX采纳,获得10
5秒前
CC发布了新的文献求助10
5秒前
HY_Chou完成签到 ,获得积分10
6秒前
7秒前
蓝色的帐篷完成签到 ,获得积分10
7秒前
开心的QQ熊完成签到,获得积分10
8秒前
无私的电灯胆完成签到 ,获得积分10
8秒前
无风发布了新的文献求助10
8秒前
唠叨的白萱完成签到,获得积分10
8秒前
小宁软糖发布了新的文献求助10
9秒前
宁囧囧完成签到 ,获得积分10
9秒前
星月夜完成签到,获得积分10
9秒前
Winnie完成签到,获得积分10
10秒前
Weining完成签到,获得积分10
11秒前
曰比的崛起完成签到,获得积分10
11秒前
Miller应助魔幻秋柔采纳,获得10
11秒前
WXY发布了新的文献求助20
11秒前
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147464
求助须知:如何正确求助?哪些是违规求助? 2798635
关于积分的说明 7830317
捐赠科研通 2455424
什么是DOI,文献DOI怎么找? 1306789
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587