Hyperspectral imaging combined with GA‐SVM for maize variety identification

高光谱成像 鉴定(生物学) 支持向量机 多样性(控制论) 人工智能 模式识别(心理学) 计算机科学 计算生物学 生物 植物
作者
Fu Zhang,Sheng Wang,Fangyuan Zhang,Ying Xiong,Xinyue Wang,Shaukat Ali,Yakun Zhang,Sanling Fu
出处
期刊:Food Science and Nutrition [Wiley]
卷期号:12 (5): 3177-3187 被引量:2
标识
DOI:10.1002/fsn3.3984
摘要

Abstract The demand for identification of maize varieties has increased dramatically due to the phenomenon of mixed seeds and inferior varieties pretending to be high‐quality varieties continuing to occur. It is urgent to solve the problem of efficient and accurate identification of maize varieties. A hyperspectral image acquisition system was used to acquire images of maize seeds. Regions of interest (ROI) with an embryo size of 10 × 10 pixel were extracted, and the average spectral information in the range of 949.43–1709.49 nm was intercepted for the subsequent study in order to eliminate random noise at both ends. Savitzky–Golay (SG) smoothing algorithm and multiple scattering correction (MSC) were used to pretreat the full‐band spectrum. The feature wavelengths were screened by successive projection algorithms (SPA), competitive adaptive reweighted sampling (CARS) single screening, and two combinations of CARS‐SPA and CARS + SPA, respectively. Support vector machines (SVMs) and models optimized based on genetic algorithm (GA), particle swarm optimization (PSO) were established by using full bands (FB) and feature bands as the model input. The results showed that the MSC‐(CARS‐SPA)‐GA‐SVM model had the best performance with 93.00% of the test set accuracy, 8 feature variables, and a running time of 24.45 s. MSC pretreatment can effectively eliminate the scattering effect of spectral data, and the feature wavelengths extracted by CARS‐SPA can represent all wavelength information. The study proved that hyperspectral imaging combined with GA‐SVM can realize the identification of maize varieties, which provided a theoretical basis for maize variety classification and authenticity identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福晓夏发布了新的文献求助10
刚刚
Jared应助majf采纳,获得10
刚刚
NZH完成签到,获得积分10
1秒前
语亦菲扬921完成签到,获得积分0
1秒前
1秒前
1秒前
健壮的面包完成签到,获得积分20
1秒前
1秒前
谢谢你哟发布了新的文献求助10
1秒前
科研通AI6应助三木一个白采纳,获得10
2秒前
2秒前
科研通AI6应助陈博士采纳,获得30
2秒前
听话的寒天举报大葱求助涉嫌违规
2秒前
你是傻逼完成签到 ,获得积分10
3秒前
成就的醉冬关注了科研通微信公众号
3秒前
Northstar完成签到,获得积分10
3秒前
3秒前
星辰大海应助quack008采纳,获得20
4秒前
4秒前
Kimin应助NZH采纳,获得20
5秒前
5秒前
6秒前
两味愚发布了新的文献求助10
6秒前
6秒前
高挑的冷荷完成签到 ,获得积分10
6秒前
6秒前
朴实怀寒发布了新的文献求助10
7秒前
7秒前
bkagyin应助想学习采纳,获得10
8秒前
北辰完成签到,获得积分10
9秒前
共享精神应助杨yy采纳,获得10
9秒前
万能图书馆应助幸运在我采纳,获得20
9秒前
9秒前
夜雨翻空完成签到,获得积分10
10秒前
唐唐完成签到 ,获得积分10
11秒前
风中冰香给科研人的求助进行了留言
11秒前
11秒前
12秒前
英俊的铭应助迷路的寄风采纳,获得10
12秒前
星星又累完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531417
求助须知:如何正确求助?哪些是违规求助? 4620221
关于积分的说明 14572354
捐赠科研通 4559789
什么是DOI,文献DOI怎么找? 2498599
邀请新用户注册赠送积分活动 1478568
关于科研通互助平台的介绍 1449979