Hyperspectral imaging combined with GA‐SVM for maize variety identification

高光谱成像 鉴定(生物学) 支持向量机 多样性(控制论) 人工智能 模式识别(心理学) 计算机科学 计算生物学 生物 植物
作者
Fu Zhang,Sheng Wang,Fangyuan Zhang,Ying Xiong,Xinyue Wang,Shaukat Ali,Yakun Zhang,Sanling Fu
出处
期刊:Food Science and Nutrition [Wiley]
卷期号:12 (5): 3177-3187 被引量:2
标识
DOI:10.1002/fsn3.3984
摘要

Abstract The demand for identification of maize varieties has increased dramatically due to the phenomenon of mixed seeds and inferior varieties pretending to be high‐quality varieties continuing to occur. It is urgent to solve the problem of efficient and accurate identification of maize varieties. A hyperspectral image acquisition system was used to acquire images of maize seeds. Regions of interest (ROI) with an embryo size of 10 × 10 pixel were extracted, and the average spectral information in the range of 949.43–1709.49 nm was intercepted for the subsequent study in order to eliminate random noise at both ends. Savitzky–Golay (SG) smoothing algorithm and multiple scattering correction (MSC) were used to pretreat the full‐band spectrum. The feature wavelengths were screened by successive projection algorithms (SPA), competitive adaptive reweighted sampling (CARS) single screening, and two combinations of CARS‐SPA and CARS + SPA, respectively. Support vector machines (SVMs) and models optimized based on genetic algorithm (GA), particle swarm optimization (PSO) were established by using full bands (FB) and feature bands as the model input. The results showed that the MSC‐(CARS‐SPA)‐GA‐SVM model had the best performance with 93.00% of the test set accuracy, 8 feature variables, and a running time of 24.45 s. MSC pretreatment can effectively eliminate the scattering effect of spectral data, and the feature wavelengths extracted by CARS‐SPA can represent all wavelength information. The study proved that hyperspectral imaging combined with GA‐SVM can realize the identification of maize varieties, which provided a theoretical basis for maize variety classification and authenticity identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tao完成签到,获得积分10
刚刚
花痴的电灯泡完成签到,获得积分10
2秒前
小鼠星球发布了新的文献求助10
2秒前
2秒前
大狒狒发布了新的文献求助10
2秒前
3秒前
吼吼哈嘿完成签到,获得积分10
3秒前
Z_Z完成签到,获得积分10
4秒前
张无凡完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
小z完成签到,获得积分10
4秒前
6秒前
sube完成签到,获得积分10
6秒前
寰宇完成签到,获得积分10
7秒前
7秒前
8秒前
上官若男应助玛尼采纳,获得10
8秒前
阿婧完成签到,获得积分10
8秒前
打打应助xzy采纳,获得10
9秒前
杨利英完成签到,获得积分10
10秒前
小白熊完成签到 ,获得积分10
10秒前
幽默的煎饼完成签到,获得积分10
10秒前
大狒狒完成签到,获得积分10
11秒前
x111发布了新的文献求助10
11秒前
白白发布了新的文献求助10
12秒前
z7486完成签到,获得积分10
15秒前
15秒前
漫迷漫完成签到,获得积分10
16秒前
hitdsh完成签到,获得积分10
17秒前
情怀应助x111采纳,获得10
18秒前
心灵美的白卉完成签到,获得积分10
18秒前
kakainho完成签到,获得积分10
18秒前
20秒前
充电宝应助白白采纳,获得10
21秒前
22秒前
安静的猴子完成签到 ,获得积分10
22秒前
菠萝冰完成签到,获得积分10
22秒前
Xiaoyisheng完成签到,获得积分10
23秒前
王大锤完成签到,获得积分10
23秒前
xzy发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733271
求助须知:如何正确求助?哪些是违规求助? 5347662
关于积分的说明 15323495
捐赠科研通 4878407
什么是DOI,文献DOI怎么找? 2621220
邀请新用户注册赠送积分活动 1570329
关于科研通互助平台的介绍 1527224