Hyperspectral imaging combined with GA‐SVM for maize variety identification

高光谱成像 鉴定(生物学) 支持向量机 多样性(控制论) 人工智能 模式识别(心理学) 计算机科学 计算生物学 生物 植物
作者
Fu Zhang,Sheng Wang,Fangyuan Zhang,Ying Xiong,Xinyue Wang,Shaukat Ali,Yakun Zhang,Sanling Fu
出处
期刊:Food Science and Nutrition [Wiley]
卷期号:12 (5): 3177-3187 被引量:2
标识
DOI:10.1002/fsn3.3984
摘要

Abstract The demand for identification of maize varieties has increased dramatically due to the phenomenon of mixed seeds and inferior varieties pretending to be high‐quality varieties continuing to occur. It is urgent to solve the problem of efficient and accurate identification of maize varieties. A hyperspectral image acquisition system was used to acquire images of maize seeds. Regions of interest (ROI) with an embryo size of 10 × 10 pixel were extracted, and the average spectral information in the range of 949.43–1709.49 nm was intercepted for the subsequent study in order to eliminate random noise at both ends. Savitzky–Golay (SG) smoothing algorithm and multiple scattering correction (MSC) were used to pretreat the full‐band spectrum. The feature wavelengths were screened by successive projection algorithms (SPA), competitive adaptive reweighted sampling (CARS) single screening, and two combinations of CARS‐SPA and CARS + SPA, respectively. Support vector machines (SVMs) and models optimized based on genetic algorithm (GA), particle swarm optimization (PSO) were established by using full bands (FB) and feature bands as the model input. The results showed that the MSC‐(CARS‐SPA)‐GA‐SVM model had the best performance with 93.00% of the test set accuracy, 8 feature variables, and a running time of 24.45 s. MSC pretreatment can effectively eliminate the scattering effect of spectral data, and the feature wavelengths extracted by CARS‐SPA can represent all wavelength information. The study proved that hyperspectral imaging combined with GA‐SVM can realize the identification of maize varieties, which provided a theoretical basis for maize variety classification and authenticity identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王时发布了新的文献求助10
刚刚
科研通AI2S应助再睡亿分钟采纳,获得10
1秒前
Polaris完成签到,获得积分10
1秒前
大蜥蜴完成签到,获得积分10
2秒前
2秒前
噗噗完成签到 ,获得积分10
3秒前
牛经理完成签到,获得积分10
3秒前
吕四亮完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
田様应助孤岛采纳,获得10
4秒前
6秒前
小毕可乐完成签到,获得积分10
6秒前
7秒前
7秒前
敦敦完成签到,获得积分20
7秒前
打打应助Phantom1234采纳,获得10
8秒前
eueurhj发布了新的文献求助10
9秒前
liiy完成签到,获得积分10
9秒前
10秒前
我是老大应助zobrzg采纳,获得10
10秒前
sddd发布了新的文献求助20
11秒前
无敌小邓历险记完成签到,获得积分10
12秒前
12秒前
12秒前
urochen完成签到 ,获得积分10
12秒前
12秒前
子叶完成签到,获得积分10
12秒前
科研通AI5应助S8采纳,获得10
13秒前
自信的德天完成签到,获得积分10
13秒前
animenz完成签到,获得积分10
14秒前
于佳卉发布了新的文献求助20
14秒前
科研通AI5应助helena333采纳,获得10
15秒前
黄林豪关注了科研通微信公众号
15秒前
俭朴的皮卡丘完成签到 ,获得积分10
15秒前
橙以澄发布了新的文献求助10
17秒前
17秒前
17秒前
偷乐完成签到,获得积分10
17秒前
源远流长完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602404
求助须知:如何正确求助?哪些是违规求助? 4011681
关于积分的说明 12419962
捐赠科研通 3691873
什么是DOI,文献DOI怎么找? 2035322
邀请新用户注册赠送积分活动 1068516
科研通“疑难数据库(出版商)”最低求助积分说明 953096