A non‐grain production on cropland spatiotemporal change detection method based on Landsat time‐series data

遥感 系列(地层学) 变更检测 生产(经济) 环境科学 时间序列 自然地理学 计算机科学 地理 地质学 机器学习 古生物学 经济 宏观经济学
作者
Tingting He,Suqin Jiang,Wu Xiao,Maoxin Zhang,Tie Tang,Heyu Zhang
出处
期刊:Land Degradation & Development [Wiley]
卷期号:35 (9): 3031-3047
标识
DOI:10.1002/ldr.5113
摘要

Abstract Global food security is being threatened by the reduction of high‐quality cropland, extreme weather events, and the uncertainty of food supply chains. The globalization of agricultural trade has elevated the diversification of non‐grain production (NGP) on cultivated land to a prominent strategy for poverty alleviation in numerous developing nations. Its rapid expansion has engendered a multitude of deleterious consequences on both food security and ecological stability. NGP in China is becoming very common in the process of rapid urbanization, threatening national food security. To better understand the causal mechanisms and enable governments to balance food security and rural development, it is crucial to have a clear understanding of the spatiotemporal dynamics of NGP using remote sensing. Yet knowledge gaps remain concerning how to use remote sensing to track human‐dominated or ‐induced long‐term cultivated land changes. Our study proposed a method for detecting the spatiotemporal evolution of NGP based on Landsat time‐series data under the Google Earth Engine platform. This approach was proposed by (1) obtaining the union of cultivated lands from multiple landcover products to minimize the cultivated land omission, (2) constructing multi‐index dynamic trend rules for 3 representative types of NGP and obtaining results at the pixel level, while adopting the continuous change detection and classification algorithm to Landsat time series (1986–2022) to determine when the most recent change occurred, (3) minimizing the noise by object‐oriented land use–land cover classification and mode filter approaches, and (4) mapping the spatiotemporal distribution of NGP. The proposed methodology was tested in Jiashan, located in Zhejiang Province (eastern China), where NGP is widespread. We achieved a high overall accuracy of 95.67% for NGP type detection and an overall accuracy of 85.26% for change detection of time. The results indicated a continued increasing pattern of NGP in Jiashan from 1986 to 2022, with the cumulative percentage of NGP increasing from 0.02% to 20.69%. This study highlights the utilization of time‐series data to document essential NGP information for evaluating food security in China and the method is well‐suited for large‐scale mapping due to its automatic manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
淼淼之锋完成签到 ,获得积分10
4秒前
我的白起是国服完成签到 ,获得积分10
13秒前
铁妹儿完成签到 ,获得积分10
14秒前
木木杉完成签到 ,获得积分10
24秒前
lilylwy完成签到 ,获得积分10
26秒前
平常山河完成签到 ,获得积分10
27秒前
居蓝完成签到 ,获得积分10
31秒前
zjq完成签到 ,获得积分10
34秒前
科研废物完成签到 ,获得积分10
36秒前
烂漫的冰蓝完成签到,获得积分20
37秒前
深情安青应助烂漫的冰蓝采纳,获得10
45秒前
echo完成签到 ,获得积分10
47秒前
纯真以晴完成签到,获得积分10
49秒前
wishe完成签到,获得积分10
50秒前
liukuangxu完成签到 ,获得积分10
59秒前
哈拉斯完成签到,获得积分10
1分钟前
Hiram完成签到,获得积分10
1分钟前
lcs完成签到,获得积分10
1分钟前
wyt完成签到,获得积分10
1分钟前
研友_8K2QJZ完成签到,获得积分10
1分钟前
Ray完成签到 ,获得积分10
1分钟前
Damon完成签到 ,获得积分10
1分钟前
1分钟前
水晶李完成签到 ,获得积分10
1分钟前
1分钟前
logolush完成签到 ,获得积分10
1分钟前
1分钟前
John发布了新的文献求助30
1分钟前
J陆lululu完成签到 ,获得积分10
1分钟前
高山流水完成签到,获得积分10
1分钟前
合适醉蝶完成签到 ,获得积分10
1分钟前
朴素海亦完成签到 ,获得积分10
1分钟前
vassallo完成签到 ,获得积分10
1分钟前
wjswift完成签到,获得积分10
2分钟前
2分钟前
Hank完成签到 ,获得积分10
2分钟前
2分钟前
月月发布了新的文献求助30
2分钟前
123完成签到 ,获得积分10
2分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167235
求助须知:如何正确求助?哪些是违规求助? 2818702
关于积分的说明 7921929
捐赠科研通 2478475
什么是DOI,文献DOI怎么找? 1320350
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443