材料科学
纳米颗粒
分子
等离子体子
纳米技术
表面增强拉曼光谱
纳米花
沸石咪唑盐骨架
拉曼光谱
表面等离子共振
纳米结构
拉曼散射
金属有机骨架
吸附
有机化学
光电子学
光学
化学
物理
作者
Jie Zhou,Chaolin Wu,Xi He,Lingjun Zhang,Xiangnan Gong,Wei Ren,Shiming Lv,Xin Zhang,Anping Liu,Yingzhou Huang
标识
DOI:10.1016/j.surfin.2024.104232
摘要
Random nanogaps between plasmonic nanoparticles formed by the surface tension of solution bring a great challenge in the application of Surface Enhanced Raman Spectroscopy (SERS) technique. Meanwhile, due to its natural nanogaps on the surface, single plasmonic nanoflower exhibits a unique charm for avoiding random gaps in the quantitative analysis of SERS. Herein, a single core-shell plasmonic nanoparticle consisting of an Ag nanoflower (AgNF) core and zeolite imidazolate frame-8 (ZIF-8) shell is synthesized for SERS detection of the gaseous molecule. Benefiting the porous shell of ZIF-8 to capture gaseous molecules and natural nanogaps on the surface of AgNF to enhance Raman intensity, SERS spectra of the gaseous molecule are successfully collected with high sensitivity at 10−6 M, which also exhibit high SERS stability with RSD at 2.29% for single nanoparticle and 9.86% for multiple single nanoparticles. In addition, two levels of automatic identification based on deep learning (DL) are also implemented in this work, whose data demonstrate artificial neural network (ANN) algorithm could identify gaseous glutaraldehyde (GA) as typical volatile organic compounds (VOCs) with high accuracy at 97.5%. This single core-shell plasmonic MOF nanoparticle overcomes the limitations of traditional SERS detection in nanoparticle aggregating and realizes the detection of gaseous molecules, which enlarges the application of SERS technique.
科研通智能强力驱动
Strongly Powered by AbleSci AI