基因沉默
纳米技术
血脑屏障
髓母细胞瘤
体内
材料科学
基因敲除
纳米颗粒
化学
癌症研究
生物物理学
医学
生物
神经科学
基因
生物化学
中枢神经系统
生物技术
作者
Helen Forgham,Jiayuan Zhu,Xumin Huang,Cheng Zhang,Heather Biggs,Liwei Liu,Yi Cheng Wang,Nicholas L. Fletcher,James Humphries,Gary Cowin,Karine Mardon,Maria Kavallaris,Kristofer J. Thurecht,Thomas P. Davis,Ruirui Qiao
标识
DOI:10.1002/advs.202401340
摘要
Abstract Patients with brain cancers including medulloblastoma lack treatments that are effective long‐term and without side effects. In this study, a multifunctional fluoropolymer‐engineered iron oxide nanoparticle gene‐therapeutic platform is presented to overcome these challenges. The fluoropolymers are designed and synthesized to incorporate various properties including robust anchoring moieties for efficient surface coating, cationic components to facilitate short interference RNA (siRNA) binding, and a fluorinated tail to ensure stability in serum. The blood‐brain barrier (BBB) tailored system demonstrates enhanced BBB penetration, facilitates delivery of functionally active siRNA to medulloblastoma cells, and delivers a significant, almost complete block in protein expression within an in vitro extracellular acidic environment (pH 6.7) – as favored by most cancer cells. In vivo, it effectively crosses an intact BBB, provides contrast for magnetic resonance imaging (MRI), and delivers siRNA capable of slowing tumor growth without causing signs of toxicity – meaning it possesses a safe theranostic function. The pioneering methodology applied shows significant promise in the advancement of brain and tumor microenvironment‐focused MRI‐siRNA theranostics for the better treatment and diagnosis of medulloblastoma.
科研通智能强力驱动
Strongly Powered by AbleSci AI