分割
计算机科学
人工智能
工程类
法律工程学
结构工程
作者
Yingchao Zhang,Cheng Liu
标识
DOI:10.1016/j.autcon.2024.105375
摘要
Timely segmentation and repair of pavement cracks significantly impacts both traffic safety and the service life of the roadway. However, current crack segmentation algorithms are limited in terms of imprecise segmentation and poor robustness. To overcome current limitations, this study proposes a pavement crack segmentation algorithm called MixCrackNet. MixCrackNet leverages deformable convolution, weighted loss functions, an efficient multi-scale attention module, and the Mix Structure to identify pavement cracks. Three datasets were used to train and validate the effectiveness of MixCrackNet. By comparing with classical semantic segmentation networks, the results demonstrate that MixCrackNet outperforms all the other models in crack segmentation. Furthermore, MixCrackNet not only exhibits exceptional performance across all three datasets, but also achieves decent results in untrained dataset. These results indicate that MixCrackNet is not only highly accurate but also robust, thereby promoting the application of semantic crack segmentation technology in pavement condition detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI