Research on multitask model of object detection and road segmentation in unstructured road scenes

分割 计算机科学 计算机视觉 人工智能 路线图 对象(语法) 地图学 地理
作者
Chengfei Gao,Fengkui Zhao,Yong Zhang,Maosong Wan
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (6): 065113-065113 被引量:3
标识
DOI:10.1088/1361-6501/ad35dd
摘要

Abstract With the rapid development of artificial intelligence and computer vision technology, autonomous driving technology has become a hot area of concern. The driving scenarios of autonomous vehicles can be divided into structured scenarios and unstructured scenarios. Compared with structured scenes, unstructured road scenes lack the constraints of lane lines and traffic rules, and the safety awareness of traffic participants is weaker. Therefore, there are new and higher requirements for the environment perception tasks of autonomous vehicles in unstructured road scenes. The current research rarely integrates the target detection and road segmentation to achieve the simultaneous processing of target detection and road segmentation of autonomous vehicle in unstructured road scenes. Aiming at the above issues, a multitask model for object detection and road segmentation in unstructured road scenes is proposed. Through the sharing and fusion of the object detection model and road segmentation model, multitask model can complete the tasks of multi-object detection and road segmentation in unstructured road scenes while inputting a picture. Firstly, MobileNetV2 is used to replace the backbone network of YOLOv5, and multi-scale feature fusion is used to realize the information exchange layer between different features. Subsequently, a road segmentation model was designed based on the DeepLabV3+ algorithm. Its main feature is that it uses MobileNetV2 as the backbone network and combines the binary classification focus loss function for network optimization. Then, we fused the object detection algorithm and road segmentation algorithm based on the shared MobileNetV2 network to obtain a multitask model and trained it on both the public dataset and the self-built dataset NJFU. The training results demonstrate that the multitask model significantly enhances the algorithm’s execution speed by approximately 10 frames per scond while maintaining the accuracy of object detection and road segmentation. Finally, we conducted validation of the multitask model on an actual vehicle.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YA发布了新的文献求助10
刚刚
zxz发布了新的文献求助10
1秒前
1秒前
小其完成签到,获得积分10
1秒前
迅速冥茗完成签到,获得积分10
2秒前
无情的匪发布了新的文献求助10
2秒前
3秒前
3秒前
Gzl完成签到 ,获得积分10
3秒前
JamesPei应助Gzb采纳,获得10
4秒前
4秒前
Jimmy_King完成签到,获得积分10
4秒前
4秒前
5秒前
wzswzs发布了新的文献求助10
5秒前
科研通AI2S应助海城好人采纳,获得10
6秒前
景色完成签到,获得积分10
6秒前
liang完成签到,获得积分10
7秒前
小羊咩咩发布了新的文献求助10
7秒前
科研小白发布了新的文献求助10
7秒前
8秒前
anderson1738发布了新的文献求助10
8秒前
8秒前
8秒前
CipherSage应助sinomenium采纳,获得30
8秒前
8秒前
和平港湾发布了新的文献求助10
9秒前
9秒前
上官若男应助ZLPY采纳,获得10
9秒前
zxz完成签到,获得积分10
9秒前
10秒前
10秒前
lifeline完成签到,获得积分10
10秒前
酷波er应助laity采纳,获得10
11秒前
昏睡的小鸭子完成签到,获得积分10
11秒前
闵凡麒发布了新的文献求助10
12秒前
风中的以山完成签到 ,获得积分10
12秒前
only完成签到 ,获得积分10
12秒前
Tzy完成签到,获得积分10
13秒前
13秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259356
求助须知:如何正确求助?哪些是违规求助? 2901031
关于积分的说明 8313436
捐赠科研通 2570386
什么是DOI,文献DOI怎么找? 1396447
科研通“疑难数据库(出版商)”最低求助积分说明 653510
邀请新用户注册赠送积分活动 631486