已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on multitask model of object detection and road segmentation in unstructured road scenes

分割 计算机科学 计算机视觉 人工智能 路线图 对象(语法) 地图学 地理
作者
Chengfei Gao,Fengkui Zhao,Yong Zhang,Maosong Wan
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (6): 065113-065113 被引量:10
标识
DOI:10.1088/1361-6501/ad35dd
摘要

Abstract With the rapid development of artificial intelligence and computer vision technology, autonomous driving technology has become a hot area of concern. The driving scenarios of autonomous vehicles can be divided into structured scenarios and unstructured scenarios. Compared with structured scenes, unstructured road scenes lack the constraints of lane lines and traffic rules, and the safety awareness of traffic participants is weaker. Therefore, there are new and higher requirements for the environment perception tasks of autonomous vehicles in unstructured road scenes. The current research rarely integrates the target detection and road segmentation to achieve the simultaneous processing of target detection and road segmentation of autonomous vehicle in unstructured road scenes. Aiming at the above issues, a multitask model for object detection and road segmentation in unstructured road scenes is proposed. Through the sharing and fusion of the object detection model and road segmentation model, multitask model can complete the tasks of multi-object detection and road segmentation in unstructured road scenes while inputting a picture. Firstly, MobileNetV2 is used to replace the backbone network of YOLOv5, and multi-scale feature fusion is used to realize the information exchange layer between different features. Subsequently, a road segmentation model was designed based on the DeepLabV3+ algorithm. Its main feature is that it uses MobileNetV2 as the backbone network and combines the binary classification focus loss function for network optimization. Then, we fused the object detection algorithm and road segmentation algorithm based on the shared MobileNetV2 network to obtain a multitask model and trained it on both the public dataset and the self-built dataset NJFU. The training results demonstrate that the multitask model significantly enhances the algorithm’s execution speed by approximately 10 frames per scond while maintaining the accuracy of object detection and road segmentation. Finally, we conducted validation of the multitask model on an actual vehicle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
DDDDai完成签到 ,获得积分10
1秒前
2秒前
elio0113发布了新的文献求助10
2秒前
善学以致用应助xxdn采纳,获得10
3秒前
nusiew发布了新的文献求助10
4秒前
4秒前
隐形曼青应助呆萌的奎采纳,获得10
4秒前
AN应助小明采纳,获得10
5秒前
6秒前
彭于晏应助haha采纳,获得10
6秒前
6秒前
bingki发布了新的文献求助10
6秒前
舒适的淇完成签到,获得积分10
6秒前
7秒前
许许完成签到,获得积分10
8秒前
林筱辰发布了新的文献求助10
8秒前
8秒前
9秒前
皮代谷发布了新的文献求助10
9秒前
传奇3应助积极的老鼠采纳,获得10
10秒前
高高的书本完成签到 ,获得积分10
10秒前
科研通AI6.1应助hhj采纳,获得10
11秒前
如意皮带完成签到 ,获得积分10
11秒前
范佳宁发布了新的文献求助10
12秒前
1825822526完成签到,获得积分10
14秒前
小葵完成签到 ,获得积分10
15秒前
15秒前
顺利函完成签到,获得积分10
16秒前
李健的小迷弟应助堇瓜采纳,获得10
16秒前
Lucas应助不会朗日的拉格采纳,获得10
16秒前
汐白完成签到,获得积分10
17秒前
17秒前
19秒前
善学以致用应助ppsweek采纳,获得10
20秒前
顺利函发布了新的文献求助10
21秒前
无期发布了新的文献求助10
21秒前
Wdw2236发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879