亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on multitask model of object detection and road segmentation in unstructured road scenes

分割 计算机科学 计算机视觉 人工智能 路线图 对象(语法) 地图学 地理
作者
Chengfei Gao,Fengkui Zhao,Yong Zhang,Maosong Wan
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (6): 065113-065113 被引量:4
标识
DOI:10.1088/1361-6501/ad35dd
摘要

Abstract With the rapid development of artificial intelligence and computer vision technology, autonomous driving technology has become a hot area of concern. The driving scenarios of autonomous vehicles can be divided into structured scenarios and unstructured scenarios. Compared with structured scenes, unstructured road scenes lack the constraints of lane lines and traffic rules, and the safety awareness of traffic participants is weaker. Therefore, there are new and higher requirements for the environment perception tasks of autonomous vehicles in unstructured road scenes. The current research rarely integrates the target detection and road segmentation to achieve the simultaneous processing of target detection and road segmentation of autonomous vehicle in unstructured road scenes. Aiming at the above issues, a multitask model for object detection and road segmentation in unstructured road scenes is proposed. Through the sharing and fusion of the object detection model and road segmentation model, multitask model can complete the tasks of multi-object detection and road segmentation in unstructured road scenes while inputting a picture. Firstly, MobileNetV2 is used to replace the backbone network of YOLOv5, and multi-scale feature fusion is used to realize the information exchange layer between different features. Subsequently, a road segmentation model was designed based on the DeepLabV3+ algorithm. Its main feature is that it uses MobileNetV2 as the backbone network and combines the binary classification focus loss function for network optimization. Then, we fused the object detection algorithm and road segmentation algorithm based on the shared MobileNetV2 network to obtain a multitask model and trained it on both the public dataset and the self-built dataset NJFU. The training results demonstrate that the multitask model significantly enhances the algorithm’s execution speed by approximately 10 frames per scond while maintaining the accuracy of object detection and road segmentation. Finally, we conducted validation of the multitask model on an actual vehicle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
17秒前
CATH完成签到 ,获得积分10
18秒前
22秒前
zhanghao发布了新的文献求助10
22秒前
Hillson完成签到,获得积分10
31秒前
糯糯完成签到 ,获得积分10
40秒前
1分钟前
自由飞阳完成签到,获得积分10
1分钟前
小羡完成签到 ,获得积分10
1分钟前
滕皓轩完成签到 ,获得积分20
1分钟前
aDou完成签到 ,获得积分10
1分钟前
George完成签到,获得积分10
1分钟前
oscar发布了新的文献求助10
1分钟前
oscar完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
疯狂的自行车完成签到,获得积分20
3分钟前
Akim应助科研通管家采纳,获得10
3分钟前
我睡觉不会困12138完成签到 ,获得积分10
4分钟前
脑洞疼应助xiongdi521采纳,获得10
4分钟前
阿泽完成签到 ,获得积分10
4分钟前
疯狂的自行车关注了科研通微信公众号
4分钟前
kohu完成签到,获得积分10
4分钟前
4分钟前
kohu发布了新的文献求助10
4分钟前
5分钟前
正直的松鼠完成签到 ,获得积分10
5分钟前
核桃发布了新的文献求助10
6分钟前
Xw关闭了Xw文献求助
6分钟前
6分钟前
Xw关闭了Xw文献求助
6分钟前
6分钟前
Swear完成签到 ,获得积分10
7分钟前
勤恳冰淇淋完成签到 ,获得积分10
7分钟前
7分钟前
El发布了新的文献求助10
7分钟前
7分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990075
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256369
捐赠科研通 3271016
什么是DOI,文献DOI怎么找? 1805171
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228