Research on multitask model of object detection and road segmentation in unstructured road scenes

分割 计算机科学 计算机视觉 人工智能 路线图 对象(语法) 地图学 地理
作者
Chengfei Gao,Fengkui Zhao,Yong Zhang,Maosong Wan
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (6): 065113-065113 被引量:4
标识
DOI:10.1088/1361-6501/ad35dd
摘要

Abstract With the rapid development of artificial intelligence and computer vision technology, autonomous driving technology has become a hot area of concern. The driving scenarios of autonomous vehicles can be divided into structured scenarios and unstructured scenarios. Compared with structured scenes, unstructured road scenes lack the constraints of lane lines and traffic rules, and the safety awareness of traffic participants is weaker. Therefore, there are new and higher requirements for the environment perception tasks of autonomous vehicles in unstructured road scenes. The current research rarely integrates the target detection and road segmentation to achieve the simultaneous processing of target detection and road segmentation of autonomous vehicle in unstructured road scenes. Aiming at the above issues, a multitask model for object detection and road segmentation in unstructured road scenes is proposed. Through the sharing and fusion of the object detection model and road segmentation model, multitask model can complete the tasks of multi-object detection and road segmentation in unstructured road scenes while inputting a picture. Firstly, MobileNetV2 is used to replace the backbone network of YOLOv5, and multi-scale feature fusion is used to realize the information exchange layer between different features. Subsequently, a road segmentation model was designed based on the DeepLabV3+ algorithm. Its main feature is that it uses MobileNetV2 as the backbone network and combines the binary classification focus loss function for network optimization. Then, we fused the object detection algorithm and road segmentation algorithm based on the shared MobileNetV2 network to obtain a multitask model and trained it on both the public dataset and the self-built dataset NJFU. The training results demonstrate that the multitask model significantly enhances the algorithm’s execution speed by approximately 10 frames per scond while maintaining the accuracy of object detection and road segmentation. Finally, we conducted validation of the multitask model on an actual vehicle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
Akim应助聪明的归尘采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得30
2秒前
LB应助科研通管家采纳,获得50
2秒前
ding应助wenjian采纳,获得10
2秒前
2秒前
英姑应助科研通管家采纳,获得10
2秒前
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得30
2秒前
Vzem完成签到 ,获得积分10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
终梦应助文静的柠檬采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
淡然钢笔完成签到,获得积分10
3秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
Hello应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
隐形的巴豆完成签到,获得积分10
4秒前
4秒前
小新应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5283704
求助须知:如何正确求助?哪些是违规求助? 4437469
关于积分的说明 13813675
捐赠科研通 4318220
什么是DOI,文献DOI怎么找? 2370348
邀请新用户注册赠送积分活动 1365683
关于科研通互助平台的介绍 1329143