已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on multitask model of object detection and road segmentation in unstructured road scenes

分割 计算机科学 计算机视觉 人工智能 路线图 对象(语法) 地图学 地理
作者
Chengfei Gao,Fengkui Zhao,Yong Zhang,Maosong Wan
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (6): 065113-065113 被引量:4
标识
DOI:10.1088/1361-6501/ad35dd
摘要

Abstract With the rapid development of artificial intelligence and computer vision technology, autonomous driving technology has become a hot area of concern. The driving scenarios of autonomous vehicles can be divided into structured scenarios and unstructured scenarios. Compared with structured scenes, unstructured road scenes lack the constraints of lane lines and traffic rules, and the safety awareness of traffic participants is weaker. Therefore, there are new and higher requirements for the environment perception tasks of autonomous vehicles in unstructured road scenes. The current research rarely integrates the target detection and road segmentation to achieve the simultaneous processing of target detection and road segmentation of autonomous vehicle in unstructured road scenes. Aiming at the above issues, a multitask model for object detection and road segmentation in unstructured road scenes is proposed. Through the sharing and fusion of the object detection model and road segmentation model, multitask model can complete the tasks of multi-object detection and road segmentation in unstructured road scenes while inputting a picture. Firstly, MobileNetV2 is used to replace the backbone network of YOLOv5, and multi-scale feature fusion is used to realize the information exchange layer between different features. Subsequently, a road segmentation model was designed based on the DeepLabV3+ algorithm. Its main feature is that it uses MobileNetV2 as the backbone network and combines the binary classification focus loss function for network optimization. Then, we fused the object detection algorithm and road segmentation algorithm based on the shared MobileNetV2 network to obtain a multitask model and trained it on both the public dataset and the self-built dataset NJFU. The training results demonstrate that the multitask model significantly enhances the algorithm’s execution speed by approximately 10 frames per scond while maintaining the accuracy of object detection and road segmentation. Finally, we conducted validation of the multitask model on an actual vehicle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Angela完成签到,获得积分10
6秒前
betyby完成签到 ,获得积分10
6秒前
sudor123456完成签到,获得积分10
7秒前
隐形曼青应助饭ff采纳,获得10
7秒前
ddfighting完成签到,获得积分10
8秒前
迷人兰花完成签到,获得积分10
17秒前
ab完成签到,获得积分10
22秒前
瘦瘦乌龟完成签到 ,获得积分10
28秒前
Worenxian完成签到 ,获得积分10
29秒前
冰西瓜完成签到 ,获得积分0
31秒前
SYLH应助ceeray23采纳,获得20
33秒前
Owen应助科研达人采纳,获得10
38秒前
杨程羽发布了新的文献求助10
42秒前
孤标傲世完成签到 ,获得积分10
43秒前
魔幻安南完成签到 ,获得积分10
44秒前
pp‘s完成签到 ,获得积分10
49秒前
大学生完成签到 ,获得积分10
52秒前
杨程羽完成签到 ,获得积分10
58秒前
仙女完成签到 ,获得积分10
58秒前
传奇3应助LMX采纳,获得10
59秒前
linghu完成签到 ,获得积分10
1分钟前
Tendency完成签到 ,获得积分10
1分钟前
善学以致用应助皮皮蟹采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
小小斌完成签到,获得积分10
1分钟前
LMX发布了新的文献求助10
1分钟前
1分钟前
1分钟前
yang完成签到 ,获得积分10
1分钟前
沉静安荷给沉静安荷的求助进行了留言
1分钟前
皮皮蟹发布了新的文献求助10
1分钟前
轻松的惜芹应助科研达人采纳,获得10
1分钟前
广州小肥羊完成签到 ,获得积分10
1分钟前
皮皮蟹完成签到,获得积分10
1分钟前
完美世界应助ceeray23采纳,获得20
1分钟前
曾经的电脑完成签到 ,获得积分10
1分钟前
Sky完成签到,获得积分10
1分钟前
握瑾怀瑜完成签到 ,获得积分0
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532047
关于积分的说明 11256141
捐赠科研通 3270918
什么是DOI,文献DOI怎么找? 1805105
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216