Deep dynamic high-order graph convolutional network for wear fault diagnosis of hydrodynamic mechanical seal

图形 杠杆(统计) 残余物 模式识别(心理学) 计算机科学 人工智能 算法 理论计算机科学
作者
Xinglin Li,Luofeng Xie,Bo Deng,Houhong Lu,Yangyang Zhu,Ming Yin,Guofu Yin,Wenxiang Gao
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:247: 110117-110117 被引量:21
标识
DOI:10.1016/j.ress.2024.110117
摘要

The hydrodynamic mechanical seal (HDMS) in the reactor coolant pump of third-generation nuclear power units is vulnerable to failure due to prolonged operational periods and inevitable wear. However, traditional fault diagnosis methods are not robust to noise and can not leverage both the topological relationships among samples and local features. To resolve these challenges, in this paper, we propose a novel graph convolutional network (GCN) for wear fault diagnosis of HDMS called deep dynamic high-order graph convolutional network (DDHGCN). First, a dynamic graph learning module is designed to control the connectivity and sparsity of the iterated graph and thus eliminate errors and redundancies caused by noise. A high-order GCN module is proposed to effectively model the correlations between nodes, capturing contextual information and mutual influences among them. A residual convolutional module is applied to extract local features hidden in individual samples to further improve the classification performance. All three modules are jointly optimized for reliable wear fault diagnosis of HDMS. Experimental results demonstrate that our DDHGCN can achieve higher performance when compared with the state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助zyl采纳,获得10
1秒前
2秒前
mouhao1发布了新的文献求助10
3秒前
吴大语完成签到,获得积分10
3秒前
wjjc发布了新的文献求助30
3秒前
5秒前
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
7秒前
7秒前
大个应助科研通管家采纳,获得10
7秒前
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
7秒前
李健应助苏尔采纳,获得10
7秒前
科研通AI5应助祁曼岚采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
7秒前
7秒前
7秒前
SYLH应助科研通管家采纳,获得20
7秒前
Pbuitf发布了新的文献求助10
7秒前
7秒前
orixero应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753151
求助须知:如何正确求助?哪些是违规求助? 3296761
关于积分的说明 10095584
捐赠科研通 3011483
什么是DOI,文献DOI怎么找? 1653854
邀请新用户注册赠送积分活动 788546
科研通“疑难数据库(出版商)”最低求助积分说明 752876