分割
磁共振弥散成像
人类连接体项目
纤维束成像
人工智能
点云
深度学习
计算机科学
白质
连接体
模式识别(心理学)
神经影像学
公制(单位)
纤维束
基本事实
纤维
磁共振成像
神经科学
心理学
医学
功能连接
放射科
运营管理
化学
有机化学
经济
作者
Di Zhang,Fangrong Zong,Qichen Zhang,Yunhui Yue,Fan Zhang,Kun Zhao,Dawei Wang,Pan Wang,Xi Zhang,Yong Liu
标识
DOI:10.1016/j.media.2024.103165
摘要
Diffusion magnetic resonance imaging (dMRI) tractography is a critical technique to map the brain's structural connectivity. Accurate segmentation of white matter, particularly the superficial white matter (SWM), is essential for neuroscience and clinical research. However, it is challenging to segment SWM due to the short adjacent gyri connection in a U-shaped pattern. In this work, we propose an Anatomically-guided Superficial Fiber Segmentation (Anat-SFSeg) framework to improve the performance on SWM segmentation. The framework consists of a unique fiber anatomical descriptor (named FiberAnatMap) and a deep learning network based on point-cloud data. The spatial coordinates of fibers represented as point clouds, as well as the anatomical features at both the individual and group levels, are fed into a neural network. The network is trained on Human Connectome Project (HCP) datasets and tested on the subjects with a range of cognitive impairment levels. One new metric named fiber anatomical region proportion (FARP), quantifies the ratio of fibers in the defined brain regions and enables the comparison with other methods. Another metric named anatomical region fiber count (ARFC), represents the average fiber number in each cluster for the assessment of inter-subject differences. The experimental results demonstrate that Anat-SFSeg achieves the highest accuracy on HCP datasets and exhibits great generalization on clinical datasets. Diffusion tensor metrics and ARFC show disorder severity associated alterations in patients with Alzheimer's disease (AD) and mild cognitive impairments (MCI). Correlations with cognitive grades show that these metrics are potential neuroimaging biomarkers for AD. Furthermore, Anat-SFSeg could be utilized to explore other neurodegenerative, neurodevelopmental or psychiatric disorders.
科研通智能强力驱动
Strongly Powered by AbleSci AI