Anat-SFSeg: Anatomically-guided superficial fiber segmentation with point-cloud deep learning

分割 磁共振弥散成像 人类连接体项目 纤维束成像 人工智能 点云 深度学习 计算机科学 白质 连接体 模式识别(心理学) 神经影像学 公制(单位) 纤维束 基本事实 纤维 磁共振成像 神经科学 心理学 医学 功能连接 放射科 运营管理 化学 有机化学 经济
作者
Di Zhang,Fangrong Zong,Qichen Zhang,Yunhui Yue,Fan Zhang,Kun Zhao,Dawei Wang,Pan Wang,Xi Zhang,Yong Liu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:95: 103165-103165 被引量:1
标识
DOI:10.1016/j.media.2024.103165
摘要

Diffusion magnetic resonance imaging (dMRI) tractography is a critical technique to map the brain's structural connectivity. Accurate segmentation of white matter, particularly the superficial white matter (SWM), is essential for neuroscience and clinical research. However, it is challenging to segment SWM due to the short adjacent gyri connection in a U-shaped pattern. In this work, we propose an Anatomically-guided Superficial Fiber Segmentation (Anat-SFSeg) framework to improve the performance on SWM segmentation. The framework consists of a unique fiber anatomical descriptor (named FiberAnatMap) and a deep learning network based on point-cloud data. The spatial coordinates of fibers represented as point clouds, as well as the anatomical features at both the individual and group levels, are fed into a neural network. The network is trained on Human Connectome Project (HCP) datasets and tested on the subjects with a range of cognitive impairment levels. One new metric named fiber anatomical region proportion (FARP), quantifies the ratio of fibers in the defined brain regions and enables the comparison with other methods. Another metric named anatomical region fiber count (ARFC), represents the average fiber number in each cluster for the assessment of inter-subject differences. The experimental results demonstrate that Anat-SFSeg achieves the highest accuracy on HCP datasets and exhibits great generalization on clinical datasets. Diffusion tensor metrics and ARFC show disorder severity associated alterations in patients with Alzheimer's disease (AD) and mild cognitive impairments (MCI). Correlations with cognitive grades show that these metrics are potential neuroimaging biomarkers for AD. Furthermore, Anat-SFSeg could be utilized to explore other neurodegenerative, neurodevelopmental or psychiatric disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
叶枫完成签到,获得积分10
刚刚
1秒前
yuzhouhaohan发布了新的文献求助10
1秒前
NexusExplorer应助婷婷子采纳,获得10
2秒前
3秒前
小羊肖恩发布了新的文献求助10
3秒前
Lyn完成签到 ,获得积分10
4秒前
Jaime发布了新的文献求助10
4秒前
默认用户名完成签到,获得积分10
4秒前
桑榆非晚完成签到,获得积分10
5秒前
5秒前
NexusExplorer应助aganer采纳,获得10
5秒前
5秒前
翔96完成签到,获得积分20
6秒前
潘越发布了新的文献求助10
6秒前
mochen发布了新的文献求助10
6秒前
Fu完成签到,获得积分10
7秒前
赫三问发布了新的文献求助10
8秒前
11秒前
嗯嗯发布了新的文献求助10
12秒前
浮游应助chosmos采纳,获得10
12秒前
12秒前
13秒前
呆头灰鸟完成签到,获得积分10
14秒前
Owen应助小羊肖恩采纳,获得10
15秒前
16秒前
ForestEcho完成签到,获得积分10
16秒前
SWAGGER123发布了新的文献求助10
16秒前
aganer发布了新的文献求助10
18秒前
FFFFF完成签到,获得积分10
18秒前
schuang完成签到,获得积分10
19秒前
自然的含蕾完成签到 ,获得积分10
20秒前
21秒前
虚幻沛菡发布了新的文献求助10
21秒前
21秒前
2134165应助赫三问采纳,获得10
21秒前
852应助嗯嗯采纳,获得10
22秒前
yuzhouhaohan完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546756
求助须知:如何正确求助?哪些是违规求助? 3977890
关于积分的说明 12317527
捐赠科研通 3646280
什么是DOI,文献DOI怎么找? 2008092
邀请新用户注册赠送积分活动 1043696
科研通“疑难数据库(出版商)”最低求助积分说明 932377