Intelligent Marine Survey: Lightweight Multi-Scale Attention Adaptive Segmentation Framework for Underwater Target Detection of AUV

水下 计算机科学 比例(比率) 分割 海洋工程 人工智能 遥控水下航行器 工程类 地质学 移动机器人 机器人 量子力学 海洋学 物理
作者
Qi Wang,Yixiao Zhang,Bo He
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:4
标识
DOI:10.1109/tase.2024.3371963
摘要

Accurate and automatic underwater target recognition is a compelling challenge for autonomous underwater vehicles (AUVs) in intelligent marine surveys. This study proposed a seabed target correction model based on side-scan sonar (SSS) images and combined the navigation information of AUV to achieve pixel-level geocoding. Moreover, a lightweight multi-level attention adaptive segmentation framework $^{^{^{^{}}}}$ ( ${\rm{M}}{{\rm{A}}^{\rm{2}}}{\rm{Net}}$ ) was proposed to achieve fine-grained recognition. It contains three new modules: 1) The lightweight attention network (LAN) is designed as the baseline to obtain dense feature maps and focus on interesting features based on a balanced attention mechanism. 2) the multi-scale feature pyramid (MASPP) was then constructed to capture the context of SSS images and extract rich semantic information at high levels. 3) Finally, the adaptive feature fusion module (AFF) effectively incorporates feature maps of MASPP and spatial information to improve the learned representations further. Extensive experiments are verified on six SSS categories and show the remarkable performance of the ${\rm{M}}{{\rm{A}}^{\rm{2}}}{\rm{Net}}$ compared with state-of-the-art methods. Furthermore, real sea trials were conducted by deploying ${\rm{M}}{{\rm{A}}^{\rm{2}}}{\rm{Net}}$ to the autonomous target recognition (ATR) system of AUV, which can achieve 29.7 fps and 81.23% MIoU for a ( $512\times 512$ ) input on a single Nvidia Jetson Xavier. Note to Practitioners —This paper aims to provide a real-time semantic segmentation model for the autonomous target detection of AUV, which is suitable for the autonomous detection of underwater targets by underwater robots (ROV, AUV, ARV, et al). This paper proposes a lightweight, multi-scale attention-adaptive segmentation framework ( ${\rm{M}}{{\rm{A}}^{\rm{2}}}{\rm{Net}}$ ) incorporating pixel-level seabed targets rectification methods. The algorithm has high segmentation accuracy and fast operation speed. It can identify seabed targets in high-resolution sonar images online and realize precise positioning of small seabed targets, which is conducive to improving the intelligence level of marine survey unmanned equipment. This paper details the design of ${\rm{M}}{{\rm{A}}^{\rm{2}}}{\rm{Net}}$ and the hardware structure of the autonomous target recognition system (ATR). Plenty of simulation experiments and sea trials have proved the efficiency and practicability of the method for the autonomous detection of different seabed targets (sand waves, coral reefs, metal balls, threads, and artificial reefs). Future research will verify the generalization of the algorithm in more seabed targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
所所应助Wri采纳,获得10
4秒前
4秒前
sky发布了新的文献求助10
4秒前
leexiaoyang发布了新的文献求助10
4秒前
李灿发布了新的文献求助10
5秒前
wanci应助专心搞学术采纳,获得10
7秒前
llj完成签到,获得积分10
7秒前
yu完成签到,获得积分10
7秒前
CipherSage应助ABCDEFG采纳,获得30
8秒前
科研通AI5应助如如要动采纳,获得10
8秒前
星辰大海应助二个虎牙采纳,获得10
9秒前
9秒前
123发布了新的文献求助10
9秒前
白白白完成签到,获得积分10
10秒前
10秒前
科研通AI2S应助愿我可采纳,获得10
12秒前
李灿完成签到,获得积分20
12秒前
12秒前
来来来发布了新的文献求助10
13秒前
蜗壳发布了新的文献求助10
13秒前
ding应助典雅的纸飞机采纳,获得10
15秒前
bkagyin应助victor采纳,获得10
16秒前
16秒前
cyr完成签到,获得积分10
16秒前
16秒前
医痞子完成签到,获得积分10
16秒前
17秒前
17秒前
19秒前
子车茗应助施雯采纳,获得30
19秒前
19秒前
xy0306发布了新的文献求助10
19秒前
赘婿应助反派采纳,获得10
20秒前
旧是完成签到 ,获得积分10
20秒前
xy完成签到,获得积分10
20秒前
PANDA发布了新的文献求助10
21秒前
二个虎牙发布了新的文献求助10
22秒前
苏大肺雾发布了新的文献求助10
23秒前
是阿龙呀完成签到,获得积分10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774724
求助须知:如何正确求助?哪些是违规求助? 3320495
关于积分的说明 10200523
捐赠科研通 3035221
什么是DOI,文献DOI怎么找? 1665407
邀请新用户注册赠送积分活动 796904
科研通“疑难数据库(出版商)”最低求助积分说明 757661