Intelligent Marine Survey: Lightweight Multi-Scale Attention Adaptive Segmentation Framework for Underwater Target Detection of AUV

水下 计算机科学 比例(比率) 分割 海洋工程 人工智能 遥控水下航行器 工程类 地质学 移动机器人 机器人 量子力学 海洋学 物理
作者
Qi Wang,Yixiao Zhang,Bo He
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:4
标识
DOI:10.1109/tase.2024.3371963
摘要

Accurate and automatic underwater target recognition is a compelling challenge for autonomous underwater vehicles (AUVs) in intelligent marine surveys. This study proposed a seabed target correction model based on side-scan sonar (SSS) images and combined the navigation information of AUV to achieve pixel-level geocoding. Moreover, a lightweight multi-level attention adaptive segmentation framework $^{^{^{^{}}}}$ ( ${\rm{M}}{{\rm{A}}^{\rm{2}}}{\rm{Net}}$ ) was proposed to achieve fine-grained recognition. It contains three new modules: 1) The lightweight attention network (LAN) is designed as the baseline to obtain dense feature maps and focus on interesting features based on a balanced attention mechanism. 2) the multi-scale feature pyramid (MASPP) was then constructed to capture the context of SSS images and extract rich semantic information at high levels. 3) Finally, the adaptive feature fusion module (AFF) effectively incorporates feature maps of MASPP and spatial information to improve the learned representations further. Extensive experiments are verified on six SSS categories and show the remarkable performance of the ${\rm{M}}{{\rm{A}}^{\rm{2}}}{\rm{Net}}$ compared with state-of-the-art methods. Furthermore, real sea trials were conducted by deploying ${\rm{M}}{{\rm{A}}^{\rm{2}}}{\rm{Net}}$ to the autonomous target recognition (ATR) system of AUV, which can achieve 29.7 fps and 81.23% MIoU for a ( $512\times 512$ ) input on a single Nvidia Jetson Xavier. Note to Practitioners —This paper aims to provide a real-time semantic segmentation model for the autonomous target detection of AUV, which is suitable for the autonomous detection of underwater targets by underwater robots (ROV, AUV, ARV, et al). This paper proposes a lightweight, multi-scale attention-adaptive segmentation framework ( ${\rm{M}}{{\rm{A}}^{\rm{2}}}{\rm{Net}}$ ) incorporating pixel-level seabed targets rectification methods. The algorithm has high segmentation accuracy and fast operation speed. It can identify seabed targets in high-resolution sonar images online and realize precise positioning of small seabed targets, which is conducive to improving the intelligence level of marine survey unmanned equipment. This paper details the design of ${\rm{M}}{{\rm{A}}^{\rm{2}}}{\rm{Net}}$ and the hardware structure of the autonomous target recognition system (ATR). Plenty of simulation experiments and sea trials have proved the efficiency and practicability of the method for the autonomous detection of different seabed targets (sand waves, coral reefs, metal balls, threads, and artificial reefs). Future research will verify the generalization of the algorithm in more seabed targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sss发布了新的文献求助10
1秒前
3秒前
含蓄半邪完成签到,获得积分10
4秒前
mafukairi应助鱼咬羊采纳,获得10
4秒前
4秒前
4秒前
栗子完成签到,获得积分10
5秒前
早爹完成签到,获得积分10
6秒前
6秒前
wulala发布了新的文献求助30
7秒前
天天快乐应助舒心的芝麻采纳,获得10
9秒前
Grayball应助hhhaaa采纳,获得10
9秒前
爱卿5271发布了新的文献求助10
9秒前
9秒前
开心乐双发布了新的文献求助10
10秒前
10秒前
10秒前
wxfacai完成签到,获得积分10
10秒前
英俊的冥完成签到,获得积分10
11秒前
虚心盼夏发布了新的文献求助10
11秒前
11秒前
虚心盼夏发布了新的文献求助10
12秒前
忧郁老头完成签到,获得积分10
12秒前
虚心盼夏发布了新的文献求助150
12秒前
12秒前
虚心盼夏发布了新的文献求助20
12秒前
虚心盼夏发布了新的文献求助20
12秒前
虚心盼夏发布了新的文献求助20
12秒前
英俊的冥发布了新的文献求助10
13秒前
虚心盼夏发布了新的文献求助20
13秒前
虚心盼夏发布了新的文献求助10
13秒前
13秒前
棠以秧完成签到 ,获得积分10
13秒前
15秒前
椰子发布了新的文献求助10
15秒前
Kakarot关注了科研通微信公众号
15秒前
15秒前
16秒前
虚心盼夏发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3551943
求助须知:如何正确求助?哪些是违规求助? 3128370
关于积分的说明 9377451
捐赠科研通 2827382
什么是DOI,文献DOI怎么找? 1554345
邀请新用户注册赠送积分活动 725429
科研通“疑难数据库(出版商)”最低求助积分说明 714842