SC-Net: Symmetrical conical network for colorectal pathology image segmentation

计算机科学 模式识别(心理学) 人工智能 背景(考古学) 特征(语言学) 分割 棱锥(几何) 特征提取 图像分割 卷积神经网络 计算机视觉 数学 生物 几何学 哲学 古生物学 语言学
作者
Gang Zhang,Zifen He,Yinhui Zhang,Zhenhui Li,Lin Wu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:248: 108119-108119 被引量:6
标识
DOI:10.1016/j.cmpb.2024.108119
摘要

Image segmentation of histopathology of colorectal cancer is a core task of computer aided medical image diagnosis system. Existing convolutional neural networks generally extract multi-scale information in linear flow structures by inserting multi-branch modules, which is difficult to extract heterogeneous semantic information under multi-level and different receptive field and tough to establish context dependency among different receptive field features. To address these issues, we propose a symmetric spiral progressive feature fusion encoder-decoder network called the Symmetric Conical Network (SC-Net). First, we design a Multi-scale Feature Extraction Block (MFEB) matching with the Symmetric Conical Network to obtain multi-branch heterogeneous semantic information under different receptive fields, so as to enrich the diversity of extracted feature information. The encoder is composed of MFEB through spiral and multi-branch arrangement to enhance context dependence between different information flow. Secondly, the information loss of contour, color and others in high-level semantic information through causally stacking MFEB, the Feature Mapping Layer (FML) is designed to map low-level features to high-level semantic features along the down-sampling branch and solve the problem of insufficient global feature extraction in deep levels. The SC-Net was evaluated on our self-constructed colorectal cancer dataset, a publicly available breast cancer dataset and a polyp dataset. The results revealed that the mDice of segmentation reached 0.8611, 0.7259 and 0.7144. We compare our model with the state-of-art semantic segmentation UNet++, PSPNet, Attention U-Net, R2U-Net and other advanced segmentation networks. The experimental results demonstrate that we achieve the most advanced performance. The results indicate that the proposed SC-Net excels in segmenting H&E stained pathology images, effectively preserving morphological features and spatial information even in scenarios with weak texture, poor contrast, and variations in appearance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿部完成签到,获得积分20
刚刚
北陆小猫完成签到,获得积分10
刚刚
刚刚
LY发布了新的文献求助10
刚刚
方意完成签到,获得积分20
刚刚
cyj发布了新的文献求助10
刚刚
西柚西柚发布了新的文献求助10
1秒前
国家栋梁发布了新的文献求助10
2秒前
所所应助聂志鹏采纳,获得10
2秒前
背后白梦完成签到,获得积分10
3秒前
我到了啊完成签到,获得积分10
3秒前
自然的枫叶应助孔雀翎采纳,获得10
3秒前
wanci应助好名字采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
syx发布了新的文献求助10
4秒前
Jasper应助Jordon采纳,获得10
4秒前
阿部发布了新的文献求助50
4秒前
Bellis完成签到 ,获得积分10
4秒前
4秒前
Owen应助昵称11采纳,获得10
5秒前
5秒前
zyp1229发布了新的文献求助10
5秒前
方意发布了新的文献求助10
5秒前
星辰完成签到,获得积分10
5秒前
6秒前
科研通AI2S应助Yang采纳,获得30
6秒前
7秒前
云想萧潇完成签到,获得积分10
7秒前
明天会早睡的完成签到,获得积分20
7秒前
8秒前
8秒前
8秒前
纪间发布了新的文献求助10
9秒前
syx完成签到,获得积分10
9秒前
王丽娟完成签到,获得积分10
9秒前
10秒前
善学以致用应助aimad采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285