SC-Net: Symmetrical conical network for colorectal pathology image segmentation

计算机科学 模式识别(心理学) 人工智能 背景(考古学) 特征(语言学) 分割 棱锥(几何) 特征提取 图像分割 卷积神经网络 计算机视觉 数学 生物 几何学 哲学 古生物学 语言学
作者
Gang Zhang,Zifen He,Yinhui Zhang,Zhenhui Li,Lin Wu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:248: 108119-108119 被引量:6
标识
DOI:10.1016/j.cmpb.2024.108119
摘要

Image segmentation of histopathology of colorectal cancer is a core task of computer aided medical image diagnosis system. Existing convolutional neural networks generally extract multi-scale information in linear flow structures by inserting multi-branch modules, which is difficult to extract heterogeneous semantic information under multi-level and different receptive field and tough to establish context dependency among different receptive field features. To address these issues, we propose a symmetric spiral progressive feature fusion encoder-decoder network called the Symmetric Conical Network (SC-Net). First, we design a Multi-scale Feature Extraction Block (MFEB) matching with the Symmetric Conical Network to obtain multi-branch heterogeneous semantic information under different receptive fields, so as to enrich the diversity of extracted feature information. The encoder is composed of MFEB through spiral and multi-branch arrangement to enhance context dependence between different information flow. Secondly, the information loss of contour, color and others in high-level semantic information through causally stacking MFEB, the Feature Mapping Layer (FML) is designed to map low-level features to high-level semantic features along the down-sampling branch and solve the problem of insufficient global feature extraction in deep levels. The SC-Net was evaluated on our self-constructed colorectal cancer dataset, a publicly available breast cancer dataset and a polyp dataset. The results revealed that the mDice of segmentation reached 0.8611, 0.7259 and 0.7144. We compare our model with the state-of-art semantic segmentation UNet++, PSPNet, Attention U-Net, R2U-Net and other advanced segmentation networks. The experimental results demonstrate that we achieve the most advanced performance. The results indicate that the proposed SC-Net excels in segmenting H&E stained pathology images, effectively preserving morphological features and spatial information even in scenarios with weak texture, poor contrast, and variations in appearance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助shirley采纳,获得10
刚刚
俊逸如风完成签到 ,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助150
2秒前
4秒前
5秒前
如沐春风发布了新的文献求助10
5秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Tourist应助科研通管家采纳,获得150
8秒前
Koalas应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
核桃应助科研通管家采纳,获得10
8秒前
浮游应助lq采纳,获得10
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
Koalas应助科研通管家采纳,获得10
9秒前
核桃应助科研通管家采纳,获得50
9秒前
9秒前
Koalas应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
安烁完成签到 ,获得积分10
9秒前
贵为我国的大姐完成签到,获得积分10
10秒前
zz发布了新的文献求助10
10秒前
一鹿阳光发布了新的文献求助30
12秒前
12秒前
14秒前
李爱国应助激情的随阴采纳,获得10
15秒前
16秒前
aimer发布了新的文献求助10
18秒前
20秒前
柳庆宇关注了科研通微信公众号
20秒前
JamesPei应助如沐春风采纳,获得10
21秒前
淡定小鸽子关注了科研通微信公众号
22秒前
乌鸡国国王完成签到 ,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073256
求助须知:如何正确求助?哪些是违规求助? 4293380
关于积分的说明 13378282
捐赠科研通 4114827
什么是DOI,文献DOI怎么找? 2253172
邀请新用户注册赠送积分活动 1257983
关于科研通互助平台的介绍 1190836