清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Revisiting the quantification of power plant CO2 emissions in the United States and China from satellite: A comparative study using three top-down approaches

遥感 卫星 中国 环境科学 气象学 气候学 地理 地质学 天文 物理 考古
作者
Cheng He,Xiao Lu,Yuzhong Zhang,Zhu Liu,Fei Jiang,Youwen Sun,Meng Gao,Y. Liu,Haipeng Lin,Junfeng Yang,Xiaojuan Lin,Yurun Wang,Chenfei Hu,Shaojia Fan
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:308: 114192-114192
标识
DOI:10.1016/j.rse.2024.114192
摘要

Top-down constraints of CO2 emissions from coal-fired power plants are critical to improving the accuracy of CO2 emission inventory and designing carbon reduction strategies. Different top-down models based on satellite observation have been proposed in previous studies, but discrepancies between these models and the underlying drivers are rarely explored, limiting the confidence of their application for monitoring point-source CO2 emissions from satellite. Here, we apply three top-down models to estimate CO2 emissions from individual coal-fired power plants in the United States (US) and China in 2014–2021 from Orbiting Carbon Observatory 2 (OCO-2) satellite observations. The first one applies the Gaussian plume model to optimize emissions by fitting modeled CO2 enhancement to the observation. The second and third methods apply the same inversion framework using the maximum likelihood estimation, but with WRF-Chem and WRF-FLEXPART as forward models, respectively. We evaluate consistency between the three methods in estimating emissions of 10 power plants in the US, using daily reported values from the US Environmental Protection Agency (EPA) as a benchmark, and then apply the three methods to quantify emissions of 13 power plants in China. Results show that the WRF-Chem and WRF-FLEXPART based inversion results are consistent with the EPA reported emission rates, with correlation coefficients (r) of 0.76 and 0.85 and mean biases (MB) of 4.06 and 3.97 ktCO2/d relative to EPA reports at all 10 power plants, respectively. The Gaussian plume model driven by wind fields from WRF-Chem model without the wind rotation shows comparable ability in reproducing the EPA reported emission rates at 7 power plants (r = 0.82, MB = 6.17), but is not applicable for the other three cases. We find that application of the high-resolution three-dimensional wind fields can better capture the shape of observed plumes, especially under complex wind conditions, compared to the Gaussian plume model which relies on wind field at a single point, and thus the Gaussian plume model has difficulty to optimize emissions under inhomogeneous wind fields or when observations are far away from the power plant. In general, using the WRF-FLEXPART model as the forward model in the inverse analysis shows advanced capability to simulate narrow-shape plumes in the absence of numerical diffusion which is inherent in Eulerian model such as WRF-Chem. Emissions estimated by the three top-town methods show a moderate consistency at 13 coal-fired power plant cases in China, with 8 of 13 cases showing differences of <30% between at least two methods. However, large differences emerge when wind fields are inhomogeneous and number of available observations is limited. Using different meteorological wind fields and OCO-2 data versions can also bring substantial differences to the posterior emissions for all three approaches. We find that the posterior CO2 emissions, though only reflecting instantaneous emission rates at satellite overpass time, are not proportional to the reported capacities of these power plants, indicating that attributing CO2 emissions simply based on the capacity of power plants in some bottom-up approaches may have significant discrepancies. Our study exposes the capability and limitation of different top-down approaches in quantifying point-source CO2 emissions, advancing their application for better serving increasing constellations of point-source imagers in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whuhustwit完成签到,获得积分10
10秒前
14秒前
xun发布了新的文献求助10
20秒前
CodeCraft应助xun采纳,获得10
30秒前
mito完成签到,获得积分10
32秒前
pig120完成签到 ,获得积分10
36秒前
小艾同学完成签到 ,获得积分10
43秒前
yinhe完成签到 ,获得积分10
54秒前
领导范儿应助嗨好采纳,获得10
1分钟前
1分钟前
xun完成签到,获得积分10
1分钟前
xun发布了新的文献求助10
1分钟前
1分钟前
小林子完成签到,获得积分10
1分钟前
嗨好完成签到,获得积分10
1分钟前
嗨好发布了新的文献求助10
1分钟前
天问完成签到 ,获得积分10
1分钟前
Casey完成签到 ,获得积分10
1分钟前
1分钟前
yueyangyin发布了新的文献求助10
1分钟前
HCCha完成签到,获得积分10
2分钟前
2分钟前
2分钟前
小白完成签到 ,获得积分10
2分钟前
香樟遗完成签到 ,获得积分10
2分钟前
科目三应助嗨好采纳,获得10
2分钟前
我桽完成签到 ,获得积分10
2分钟前
云生雾霭发布了新的文献求助30
2分钟前
明理问柳完成签到,获得积分10
2分钟前
谭平完成签到 ,获得积分10
2分钟前
jiudai完成签到 ,获得积分10
2分钟前
loga80完成签到,获得积分0
3分钟前
Peng完成签到 ,获得积分10
3分钟前
3分钟前
异烟肼完成签到 ,获得积分10
3分钟前
云生雾霭完成签到,获得积分10
3分钟前
嗨好发布了新的文献求助10
3分钟前
火星上惜天完成签到 ,获得积分10
3分钟前
Emperor完成签到 ,获得积分0
3分钟前
昵称完成签到 ,获得积分10
3分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142823
求助须知:如何正确求助?哪些是违规求助? 2793662
关于积分的说明 7807147
捐赠科研通 2449982
什么是DOI,文献DOI怎么找? 1303563
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350