Development of a machine learning model to classify mineral deposits using sphalerite chemistry and mineral assemblages

闪锌矿 矿物 地质学 微量元素 矿产资源分类 矿物学 地球化学 化学 黄铁矿 有机化学
作者
Ruichang Tan,Yongjun Shao,Matthew J. Brzozowski,Yi Zheng,Yi-Qu Xiong
出处
期刊:Ore Geology Reviews [Elsevier]
卷期号:169: 106076-106076 被引量:1
标识
DOI:10.1016/j.oregeorev.2024.106076
摘要

Sphalerite is a commonly occurring mineral in natural systems and a prominent indicator mineral used in resource exploration. Its chemistry and associated mineral assemblages are both controlled by the physicochemical conditions of the local environment, such as temperature and sulfur fugacity. Accordingly, the chemistry of sphalerite and the nature of the associated minerals provide valuable clues about the classification of mineral deposits and their environment of formation. Nevertheless, exclusive reliance on the trace-element chemistry of sphalerite for deposit classification has its limitations given the multitude of factors (For example, deposit type, temperature, pressure, and background concentrations of elements) that affect its chemistry. To address this challenge, we develop machine learning models using the SHapley Additive exPlanations (SHAP) method to assess the importance of sphalerite trace-element chemistry and mineral assemblage information to distinguishing between five petrogenetically distinct mineral deposit types. This contribution demonstrates that a composite model that incorporates both data types markedly improve the accuracy of deposit type discrimination. The composite model is composed of two sub-models, Random Forest (RF) and Extra Random Trees (ERT), which are specifically employed for processing trace-element data and mineral assemblage data, respectively, due to their superior performance in handling these two distinct types of datasets. To simplify the end-user experience, we provide an executable file of the machine learning-based classifier, allowing it to be readily applied as an exploration tool using simple inputs. In summary, this work substantially enhances the confidence of Pb-Zn deposit type classification using sphalerite and introduces an innovative perspective on the application of machine learning to resolving complex geological problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助滕侑林采纳,获得10
1秒前
An慧发布了新的文献求助10
2秒前
慕青应助赵维雪采纳,获得10
3秒前
Zz发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
互助遵法尚德应助结算采纳,获得10
5秒前
5秒前
7秒前
JamesPei应助姚姚采纳,获得10
7秒前
聂珩完成签到,获得积分10
9秒前
张静怡发布了新的文献求助10
9秒前
9秒前
ff关注了科研通微信公众号
10秒前
天天快乐应助要笑采纳,获得10
10秒前
鱼块完成签到,获得积分10
10秒前
潇洒甜瓜应助白翊辰采纳,获得10
10秒前
11秒前
Akim应助卢国强采纳,获得10
11秒前
13秒前
酷波er应助lyh采纳,获得10
14秒前
徐香猕猴桃完成签到 ,获得积分10
14秒前
打打应助4813500采纳,获得10
14秒前
14秒前
滕侑林发布了新的文献求助10
14秒前
小乙大夫发布了新的文献求助10
14秒前
称心的映菱完成签到,获得积分10
15秒前
JING发布了新的文献求助10
15秒前
ff完成签到,获得积分10
16秒前
17秒前
李健的小迷弟应助keroro采纳,获得10
18秒前
张大彪完成签到,获得积分10
18秒前
lyla发布了新的文献求助10
19秒前
搜集达人应助cm采纳,获得10
20秒前
苹果从菡发布了新的文献求助10
20秒前
20秒前
ff发布了新的文献求助10
20秒前
21秒前
Zz完成签到 ,获得积分10
21秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233513
求助须知:如何正确求助?哪些是违规求助? 2880149
关于积分的说明 8213874
捐赠科研通 2547481
什么是DOI,文献DOI怎么找? 1377007
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623154