已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of a machine learning model to classify mineral deposits using sphalerite chemistry and mineral assemblages

闪锌矿 矿物 地质学 微量元素 矿产资源分类 矿物学 地球化学 化学 黄铁矿 有机化学
作者
Ruichang Tan,Yongjun Shao,Matthew J. Brzozowski,Yi Zheng,Yi-Qu Xiong
出处
期刊:Ore Geology Reviews [Elsevier]
卷期号:169: 106076-106076 被引量:1
标识
DOI:10.1016/j.oregeorev.2024.106076
摘要

Sphalerite is a commonly occurring mineral in natural systems and a prominent indicator mineral used in resource exploration. Its chemistry and associated mineral assemblages are both controlled by the physicochemical conditions of the local environment, such as temperature and sulfur fugacity. Accordingly, the chemistry of sphalerite and the nature of the associated minerals provide valuable clues about the classification of mineral deposits and their environment of formation. Nevertheless, exclusive reliance on the trace-element chemistry of sphalerite for deposit classification has its limitations given the multitude of factors (For example, deposit type, temperature, pressure, and background concentrations of elements) that affect its chemistry. To address this challenge, we develop machine learning models using the SHapley Additive exPlanations (SHAP) method to assess the importance of sphalerite trace-element chemistry and mineral assemblage information to distinguishing between five petrogenetically distinct mineral deposit types. This contribution demonstrates that a composite model that incorporates both data types markedly improve the accuracy of deposit type discrimination. The composite model is composed of two sub-models, Random Forest (RF) and Extra Random Trees (ERT), which are specifically employed for processing trace-element data and mineral assemblage data, respectively, due to their superior performance in handling these two distinct types of datasets. To simplify the end-user experience, we provide an executable file of the machine learning-based classifier, allowing it to be readily applied as an exploration tool using simple inputs. In summary, this work substantially enhances the confidence of Pb-Zn deposit type classification using sphalerite and introduces an innovative perspective on the application of machine learning to resolving complex geological problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向阳发布了新的文献求助10
3秒前
Akim应助柚子采纳,获得10
4秒前
大模型应助PAPA采纳,获得10
5秒前
6秒前
Hello应助科研通管家采纳,获得10
7秒前
Hilda007应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
YifanWang应助科研通管家采纳,获得10
7秒前
Hilda007应助科研通管家采纳,获得10
7秒前
CCCheny应助科研通管家采纳,获得10
7秒前
YifanWang应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
8秒前
CCCheny应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
8秒前
隐形曼青应助科研通管家采纳,获得100
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得100
8秒前
Hello应助科研通管家采纳,获得10
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
SciGPT应助科研通管家采纳,获得30
8秒前
SciGPT应助科研通管家采纳,获得30
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
Owen应助科研通管家采纳,获得10
8秒前
8秒前
Owen应助科研通管家采纳,获得10
8秒前
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
jike发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938