Development of a machine learning model to classify mineral deposits using sphalerite chemistry and mineral assemblages

闪锌矿 矿物 地质学 微量元素 矿产资源分类 矿物学 地球化学 化学 黄铁矿 有机化学
作者
Ruichang Tan,Yongjun Shao,Matthew J. Brzozowski,Yi Zheng,Yi-Qu Xiong
出处
期刊:Ore Geology Reviews [Elsevier]
卷期号:169: 106076-106076 被引量:1
标识
DOI:10.1016/j.oregeorev.2024.106076
摘要

Sphalerite is a commonly occurring mineral in natural systems and a prominent indicator mineral used in resource exploration. Its chemistry and associated mineral assemblages are both controlled by the physicochemical conditions of the local environment, such as temperature and sulfur fugacity. Accordingly, the chemistry of sphalerite and the nature of the associated minerals provide valuable clues about the classification of mineral deposits and their environment of formation. Nevertheless, exclusive reliance on the trace-element chemistry of sphalerite for deposit classification has its limitations given the multitude of factors (For example, deposit type, temperature, pressure, and background concentrations of elements) that affect its chemistry. To address this challenge, we develop machine learning models using the SHapley Additive exPlanations (SHAP) method to assess the importance of sphalerite trace-element chemistry and mineral assemblage information to distinguishing between five petrogenetically distinct mineral deposit types. This contribution demonstrates that a composite model that incorporates both data types markedly improve the accuracy of deposit type discrimination. The composite model is composed of two sub-models, Random Forest (RF) and Extra Random Trees (ERT), which are specifically employed for processing trace-element data and mineral assemblage data, respectively, due to their superior performance in handling these two distinct types of datasets. To simplify the end-user experience, we provide an executable file of the machine learning-based classifier, allowing it to be readily applied as an exploration tool using simple inputs. In summary, this work substantially enhances the confidence of Pb-Zn deposit type classification using sphalerite and introduces an innovative perspective on the application of machine learning to resolving complex geological problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
star009发布了新的文献求助10
刚刚
韩楠完成签到 ,获得积分10
1秒前
冷艳妙柏完成签到,获得积分10
3秒前
小泽发布了新的文献求助10
3秒前
111发布了新的文献求助10
3秒前
中国大陆发布了新的文献求助10
3秒前
3秒前
math-naive给math-naive的求助进行了留言
3秒前
游标卡尺发布了新的文献求助10
3秒前
4秒前
琳琳发布了新的文献求助10
5秒前
6秒前
星辰大海应助doc_car采纳,获得10
6秒前
潇潇雨歇发布了新的文献求助10
7秒前
斯文败类应助lisier采纳,获得10
8秒前
9秒前
勤恳雅莉应助panjialiang707采纳,获得10
9秒前
一一发布了新的文献求助10
10秒前
10秒前
烟花应助自由南松采纳,获得10
10秒前
吱吱发布了新的文献求助30
11秒前
11秒前
一天完成签到,获得积分10
11秒前
心静如水发布了新的文献求助20
11秒前
量子星尘发布了新的文献求助10
11秒前
111关闭了111文献求助
12秒前
桐桐应助干净的南风采纳,获得10
12秒前
Eric发布了新的文献求助10
12秒前
12秒前
12秒前
地沙坦发布了新的文献求助20
12秒前
13秒前
13秒前
脑洞疼应助游标卡尺采纳,获得10
13秒前
nn发布了新的文献求助10
13秒前
科研通AI2S应助傲娇的刺猬采纳,获得30
13秒前
mcw发布了新的文献求助20
14秒前
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578178
求助须知:如何正确求助?哪些是违规求助? 4663118
关于积分的说明 14744673
捐赠科研通 4603816
什么是DOI,文献DOI怎么找? 2526698
邀请新用户注册赠送积分活动 1496310
关于科研通互助平台的介绍 1465712