Reconstruct 3D seismic data with randomly missing traces via fast self-supervised deep learning

计算机科学 深度学习 人工智能 缺少数据 模式识别(心理学) 地质学 机器学习
作者
Yinshuo Li,Wei Cao,Wenkai Lu,Xiaogang Huang,Jicai Ding,Cao Song
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14
标识
DOI:10.1109/tgrs.2024.3401130
摘要

Seismic data acquisition is an indispensable step in seismic exploration, whose cost takes up a large proportion of seismic exploration. The cost of seismic data acquisition has limited the development of industrial manufacturing. The compressed sensing method can obtain high-quality seismic data with less random sampling. Recently, deep learning (DL) based compressed sensing methods have achieved outstanding performance in the reconstruction of seismic data with randomly missing traces. However, most existing DL-based methods focus on the 2D seismic data. The obstacle to applying deep learning to the reconstruction of 3D seismic data is the lack of high-quality training data. Self-supervised learning can overcome the lack of high-quality training data. Nevertheless, the time cost is the biggest obstacle preventing the application of self-supervised learning methods. To solve the above issues, we propose a fast self-supervised learning method for the reconstruction of 3D seismic data. The proposed method learns from the observed seismic data directly by sub-sampling. Besides, 3D lightweight gated convolution layers are utilized for highly efficient reconstruction of the input seismic data with randomly missing traces. Meanwhile, the proposed method employs a global waveform extractor based on a fast Fourier transform to extract global waveform. The synthetic and field experiments have demonstrated that the proposed method has a remarkable reconstruction performance with high efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子发布了新的文献求助10
刚刚
1秒前
2秒前
羽枔发布了新的文献求助10
2秒前
lmc发布了新的文献求助10
3秒前
ljy2015发布了新的文献求助10
6秒前
6秒前
8秒前
靓靓靓发布了新的文献求助20
8秒前
Fuaget完成签到,获得积分10
8秒前
传奇3应助Tokgo采纳,获得10
9秒前
淡淡的诗兰应助承诺信守采纳,获得50
9秒前
9秒前
11秒前
hl268完成签到,获得积分10
12秒前
zho发布了新的文献求助10
12秒前
翻似烂柯人完成签到,获得积分10
12秒前
12秒前
好好完成签到,获得积分20
14秒前
15秒前
menghuaxijie完成签到,获得积分10
15秒前
17秒前
18秒前
无私的定帮完成签到,获得积分10
19秒前
19秒前
淡淡奇异果完成签到,获得积分20
20秒前
menghuaxijie发布了新的文献求助10
21秒前
22秒前
烟花应助郑雪红采纳,获得10
22秒前
朴实的乌龟完成签到,获得积分10
23秒前
苏谶发布了新的文献求助10
24秒前
25秒前
蜡笔不小鑫完成签到,获得积分10
25秒前
Akim应助lmc采纳,获得10
26秒前
自觉平露完成签到,获得积分10
26秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
大模型应助知足的憨人*-*采纳,获得10
28秒前
zho应助科研通管家采纳,获得10
28秒前
ZSJ发布了新的文献求助50
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728868
求助须知:如何正确求助?哪些是违规求助? 3273864
关于积分的说明 9983827
捐赠科研通 2989180
什么是DOI,文献DOI怎么找? 1640240
邀请新用户注册赠送积分活动 779158
科研通“疑难数据库(出版商)”最低求助积分说明 747991