材料科学
涂层
胶粘剂
复合材料
高分子化学
图层(电子)
高分子科学
纳米技术
作者
Rufang Wei,Junjie Deng,Xiangshu Guo,Yanyu Yang,Jiru Miao,Ashuang Liu,Haiyang Chai,Xinqi Huang,Zhihe Zhao,Xiao Cen,Rong Wang
标识
DOI:10.1002/marc.202400234
摘要
Invisible aligners have been widely used in orthodontic treatment but still present issues with plaque formation and oral mucosa abrasion, which can lead to complicated oral diseases. To address these issues, hydrophilic poly(sulfobetaine methacrylate) (polySBMA) coatings with lubricating, antifouling, and antiadhesive properties have been developed on the aligner materials (i.e., polyethylene terephthalate glycol, PETG) via a simple and feasible glycidyl methacrylate (GMA)-assisted coating strategy. Poly(GMA-co-SBMA) is grafted onto the aminated PETG surface via the ring-opening reaction of GMA (i.e., "grafting to" approach to obtain G-co-S coating), or a polySBMA layer is formed on the GMA-grafted PETG surface via free radical polymerization (i.e., "grafting from" approach to obtain G-g-S coating). The G-co-S and G-g-S coatings significantly reduce the friction coefficient of PETG surface. Protein adsorption, bacterial adhesion, and biofilm formation on the G-co-S- and G-g-S-coated surfaces are significantly inhibited. The performance of the coatings remains stable after storage in air or artificial saliva for 2 weeks. Both coatings demonstrate good biocompatibility in vitro and is not caused irritation to the oral mucosa of rats in vivo over 2 weeks. This study proposes a promising strategy for the development of invisible aligners with improved performance, which is beneficial for oral health treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI