已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Examining nonlinear effects of socioecological drivers on urban solar energy development in China using machine learning and high-dimensional data

光伏系统 可再生能源 环境科学 地理信息系统 地理空间分析 环境经济学 计算机科学 气象学 环境资源管理 地理 工程类 地图学 经济 电气工程
作者
Yi Fan Zhao,Weiting Ge,Yanwei Sun,Guanming Qiao,Danfeng Zhu,Hongying Ai
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:360: 121092-121092
标识
DOI:10.1016/j.jenvman.2024.121092
摘要

In the context of carbon neutrality target, renewable energy sources have been transforming from "supplementary energy" to "main energy", which have promoted the green and low-carbon transition of global energy supply system. In-depth analyzing the spatial patterns and driving mechanisms of renewable energy expansion are of significance for optimizing the spatial layout of clean power, and avoiding the phenomenon of wind and solar power curtailment. In this paper, we proposed an ensemble learning model to examine the nonlinear effects of physical geography, resource endowment, and socio-economic factors on solar photovoltaic (PV) capacity at the prefecture-level city scale in China. Using the city-level multi-sources geospatial big data, we extensively collected a total of 175 related explanatory variables and cumulative installed capacity of solar PV power for 295 prefecture-level cities of China. The recursive feature elimination algorithm (SVM-REF) is firstly used to extract the optimal feature subset of urban PV capacity from multi-dimensional features variables. Furthermore, three advanced machine learning models (random forest, decision tree, extreme gradient boosting) are developed to identify the key influencing factors and nonlinear driving effect of urban solar PV power expansion in China. The results show that China's PV installation capacity is highly concentrated in Northern and Northwest parts of China, with the occupancy over 70% in 2019. Moreover, the XGBoost model has the best prediction accuracy (R2 = 0.97) among three methods. We also found that total amount of urban water resources, average solar radiation, and population density are the most important controlling factors for urban solar PV capacity expansion in China, with contribution of 35.6%, 17.7%, and 13.3%, respectively. We suggested that urban solar PV layout mode in China is recommended to gradually shift from resource orientation to the "resource-environment-demand" comprehensive orientation. The paper provides a replicable, scalable machine learning models for simulating solar PV power capacity at the prefecture-level city scale, and serves as a motivation for decision-making reference of the macro siting optimization and sustainable development of China's green power industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
4秒前
5秒前
lpp32发布了新的文献求助10
6秒前
万能图书馆应助明亮无颜采纳,获得10
6秒前
7秒前
9秒前
9秒前
11秒前
11秒前
Persist6578完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
13秒前
山茶完成签到 ,获得积分10
15秒前
17秒前
小杨发布了新的文献求助10
17秒前
heihei发布了新的文献求助10
17秒前
21秒前
善良夜梅应助L21采纳,获得10
21秒前
小二郎应助L21采纳,获得10
21秒前
栗子完成签到,获得积分10
23秒前
亚旭完成签到,获得积分10
24秒前
Persist完成签到 ,获得积分10
24秒前
芋圆不圆发布了新的文献求助10
25秒前
didi完成签到 ,获得积分10
26秒前
打打应助粉色的矿泉水采纳,获得10
26秒前
Cc完成签到 ,获得积分10
29秒前
忧虑的羊发布了新的文献求助10
29秒前
棒棒冰完成签到 ,获得积分10
29秒前
32秒前
seven完成签到 ,获得积分10
32秒前
小滕完成签到 ,获得积分10
33秒前
37秒前
38秒前
40秒前
lpp32完成签到,获得积分10
40秒前
在水一方应助科研通管家采纳,获得10
41秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248577
求助须知:如何正确求助?哪些是违规求助? 2892044
关于积分的说明 8269571
捐赠科研通 2560135
什么是DOI,文献DOI怎么找? 1388854
科研通“疑难数据库(出版商)”最低求助积分说明 650918
邀请新用户注册赠送积分活动 627798