Examining nonlinear effects of socioecological drivers on urban solar energy development in China using machine learning and high-dimensional data

光伏系统 可再生能源 环境科学 地理信息系统 地理空间分析 环境经济学 计算机科学 气象学 环境资源管理 地理 工程类 地图学 经济 电气工程
作者
Yi Fan Zhao,Weiting Ge,Yanwei Sun,Guanming Qiao,Danfeng Zhu,Hongying Ai
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:360: 121092-121092
标识
DOI:10.1016/j.jenvman.2024.121092
摘要

In the context of carbon neutrality target, renewable energy sources have been transforming from "supplementary energy" to "main energy", which have promoted the green and low-carbon transition of global energy supply system. In-depth analyzing the spatial patterns and driving mechanisms of renewable energy expansion are of significance for optimizing the spatial layout of clean power, and avoiding the phenomenon of wind and solar power curtailment. In this paper, we proposed an ensemble learning model to examine the nonlinear effects of physical geography, resource endowment, and socio-economic factors on solar photovoltaic (PV) capacity at the prefecture-level city scale in China. Using the city-level multi-sources geospatial big data, we extensively collected a total of 175 related explanatory variables and cumulative installed capacity of solar PV power for 295 prefecture-level cities of China. The recursive feature elimination algorithm (SVM-REF) is firstly used to extract the optimal feature subset of urban PV capacity from multi-dimensional features variables. Furthermore, three advanced machine learning models (random forest, decision tree, extreme gradient boosting) are developed to identify the key influencing factors and nonlinear driving effect of urban solar PV power expansion in China. The results show that China's PV installation capacity is highly concentrated in Northern and Northwest parts of China, with the occupancy over 70% in 2019. Moreover, the XGBoost model has the best prediction accuracy (R2 = 0.97) among three methods. We also found that total amount of urban water resources, average solar radiation, and population density are the most important controlling factors for urban solar PV capacity expansion in China, with contribution of 35.6%, 17.7%, and 13.3%, respectively. We suggested that urban solar PV layout mode in China is recommended to gradually shift from resource orientation to the "resource-environment-demand" comprehensive orientation. The paper provides a replicable, scalable machine learning models for simulating solar PV power capacity at the prefecture-level city scale, and serves as a motivation for decision-making reference of the macro siting optimization and sustainable development of China's green power industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
夯大力发布了新的文献求助10
刚刚
刚刚
1秒前
自觉沛芹完成签到,获得积分10
1秒前
YukiXu完成签到 ,获得积分10
1秒前
1秒前
桐桐应助SXM采纳,获得10
2秒前
波特卡斯D艾斯完成签到 ,获得积分10
3秒前
852应助排骨炖豆角采纳,获得10
4秒前
4秒前
顾矜应助木子采纳,获得10
4秒前
feng发布了新的文献求助10
4秒前
成就的小熊猫完成签到,获得积分10
5秒前
5秒前
Morgenstern_ZH完成签到,获得积分10
6秒前
hua发布了新的文献求助10
6秒前
_Forelsket_完成签到,获得积分10
6秒前
6秒前
半颗橙子完成签到 ,获得积分10
8秒前
科研通AI5应助zmy采纳,获得10
8秒前
善学以致用应助enoot采纳,获得10
9秒前
JamesPei应助失眠的血茗采纳,获得10
9秒前
青山发布了新的文献求助10
9秒前
亻鱼发布了新的文献求助10
10秒前
脑洞疼应助成就的小熊猫采纳,获得10
10秒前
10秒前
waterclouds完成签到 ,获得积分10
10秒前
圆圈儿完成签到,获得积分10
10秒前
司空剑封完成签到,获得积分10
11秒前
11秒前
海棠yiyi完成签到,获得积分10
11秒前
11秒前
梁小鑫发布了新的文献求助10
11秒前
Jenny应助圈圈采纳,获得10
12秒前
内向青文完成签到,获得积分10
12秒前
lefora完成签到,获得积分10
12秒前
丰知然应助CO2采纳,获得10
13秒前
Zhihu完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740