GPU accelerated sparse curvelet-constrained wavefield reconstruction inversion with source estimation: Application to Chevron Benchmark 2014 blind test data set

反演(地质) 水准点(测量) V形(解剖学) 地质学 计算机科学 算法 曲线波变换 模式识别(心理学) 人工智能 地震学 大地测量学 小波 古生物学 小波变换 构造学
作者
Zhilong Fang,Hua Wang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (5): R443-R455 被引量:1
标识
DOI:10.1190/geo2023-0685.1
摘要

Full-waveform inversion (FWI) is a pivotal tool in seismic exploration and seismology but encounters a persistent challenge known as “cycle-skipping,” causing it to frequently converge to local minima. Wavefield reconstruction inversion (WRI) has emerged as a potential solution to mitigate the risk of cycle skipping. Researchers have provided numerical examples indicating that WRI is less prone to being ensnared in local minima caused by the absence of low-frequency component data and the absence of a well-defined initial model compared with conventional FWI. Despite its potential, the computational demands of WRI have hindered its widespread application, especially in scenarios involving ocean towed streamer seismic acquisition and unknown sources, where the augmented systems differ from source to source. In our study, we introduce a novel approach — sparse curvelet-constrained WRI with source estimation (WRI-SE-CC) — accelerated by graphics processing unit (GPU). Real-time source function estimation is achieved through the variable projection method, and noise-related artifacts are suppressed using sparse curvelet constraints. By optimizing the utilization of hundreds of computation processors within a GPU for parallel computing of matrix-vector multiplications, we present a GPU-based grouped conjugate gradient method to accelerate the computation of WRI-SE-CC. Numerical experiments demonstrate a significant 240-fold acceleration compared with the preconditioned conjugate gradient using one CPU core for computations involving multiple sources. Inversion experiments with the overthrust model demonstrate the capability of our method in mitigating local minima and suppressing noise-related artifacts. Furthermore, we validate the framework on the Chevron 2014 blind test data set, showcasing its effectiveness in addressing practical challenges in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yan发布了新的文献求助10
1秒前
cholate完成签到,获得积分10
1秒前
wonhui发布了新的文献求助10
2秒前
2秒前
谦让溪灵完成签到,获得积分10
2秒前
2秒前
5秒前
cat发布了新的文献求助10
7秒前
7秒前
丘比特应助upsoar采纳,获得10
8秒前
9秒前
9秒前
rrrrrwwwww发布了新的文献求助10
10秒前
zhengxy2002发布了新的文献求助30
12秒前
Baboonium发布了新的文献求助10
13秒前
外向松思发布了新的文献求助10
13秒前
13秒前
14秒前
cat完成签到,获得积分10
14秒前
Orange应助11111采纳,获得10
14秒前
深情安青应助东方采纳,获得10
15秒前
15秒前
慕青应助Zing采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得30
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
17秒前
情怀应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
18秒前
bkagyin应助科研通管家采纳,获得20
18秒前
清秀乾发布了新的文献求助10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164710
捐赠科研通 3247680
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498