GPU accelerated sparse curvelet-constrained wavefield reconstruction inversion with source estimation: Application to Chevron Benchmark 2014 blind test data set

反演(地质) 水准点(测量) V形(解剖学) 地质学 计算机科学 算法 曲线波变换 模式识别(心理学) 人工智能 地震学 大地测量学 小波 古生物学 小波变换 构造学
作者
Zhilong Fang,Hua Wang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (5): R443-R455 被引量:1
标识
DOI:10.1190/geo2023-0685.1
摘要

Full-waveform inversion (FWI) is a pivotal tool in seismic exploration and seismology but encounters a persistent challenge known as “cycle-skipping,” causing it to frequently converge to local minima. Wavefield reconstruction inversion (WRI) has emerged as a potential solution to mitigate the risk of cycle skipping. Researchers have provided numerical examples indicating that WRI is less prone to being ensnared in local minima caused by the absence of low-frequency component data and the absence of a well-defined initial model compared with conventional FWI. Despite its potential, the computational demands of WRI have hindered its widespread application, especially in scenarios involving ocean towed streamer seismic acquisition and unknown sources, where the augmented systems differ from source to source. In our study, we introduce a novel approach — sparse curvelet-constrained WRI with source estimation (WRI-SE-CC) — accelerated by graphics processing unit (GPU). Real-time source function estimation is achieved through the variable projection method, and noise-related artifacts are suppressed using sparse curvelet constraints. By optimizing the utilization of hundreds of computation processors within a GPU for parallel computing of matrix-vector multiplications, we present a GPU-based grouped conjugate gradient method to accelerate the computation of WRI-SE-CC. Numerical experiments demonstrate a significant 240-fold acceleration compared with the preconditioned conjugate gradient using one CPU core for computations involving multiple sources. Inversion experiments with the overthrust model demonstrate the capability of our method in mitigating local minima and suppressing noise-related artifacts. Furthermore, we validate the framework on the Chevron 2014 blind test data set, showcasing its effectiveness in addressing practical challenges in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杨完成签到,获得积分10
4秒前
4秒前
simon完成签到,获得积分10
6秒前
土豪的灵竹完成签到 ,获得积分10
6秒前
6秒前
温暖糖豆完成签到 ,获得积分10
8秒前
cyndi完成签到 ,获得积分10
9秒前
搜集达人应助simon采纳,获得10
10秒前
研友_8y2G0L完成签到,获得积分10
14秒前
甲乙完成签到,获得积分10
14秒前
六初完成签到 ,获得积分10
16秒前
Singularity应助小阿博采纳,获得10
16秒前
wodetaiyangLLL完成签到 ,获得积分10
18秒前
lurenjia009完成签到,获得积分10
19秒前
刘刘完成签到,获得积分10
20秒前
弯弯完成签到 ,获得积分10
21秒前
干净的翠琴完成签到 ,获得积分10
21秒前
一心完成签到,获得积分10
21秒前
22秒前
伯赏凝旋完成签到 ,获得积分10
23秒前
Ranrunn完成签到 ,获得积分10
25秒前
传统的松鼠完成签到 ,获得积分10
25秒前
黄垚发布了新的文献求助10
28秒前
35秒前
andrele应助黄垚采纳,获得10
38秒前
吉吉国王完成签到,获得积分10
38秒前
郭义敏完成签到,获得积分0
39秒前
cl完成签到,获得积分10
40秒前
榆木小鸟完成签到 ,获得积分10
40秒前
NexusExplorer应助szc采纳,获得10
40秒前
Clarissa完成签到,获得积分10
41秒前
41秒前
43秒前
Lloyd_Lee完成签到,获得积分10
44秒前
T_MC郭发布了新的文献求助10
45秒前
姜姜完成签到 ,获得积分10
46秒前
科研通AI2S应助小阿博采纳,获得10
48秒前
48秒前
Mt完成签到,获得积分10
49秒前
50秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311314
求助须知:如何正确求助?哪些是违规求助? 2944006
关于积分的说明 8516896
捐赠科研通 2619458
什么是DOI,文献DOI怎么找? 1432306
科研通“疑难数据库(出版商)”最低求助积分说明 664597
邀请新用户注册赠送积分活动 649856