GPU accelerated sparse curvelet-constrained wavefield reconstruction inversion with source estimation: Application to Chevron Benchmark 2014 blind test data set

反演(地质) 水准点(测量) V形(解剖学) 地质学 计算机科学 算法 曲线波变换 模式识别(心理学) 人工智能 地震学 大地测量学 小波 古生物学 小波变换 构造学
作者
Zhilong Fang,Hua Wang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (5): R443-R455 被引量:1
标识
DOI:10.1190/geo2023-0685.1
摘要

Full-waveform inversion (FWI) is a pivotal tool in seismic exploration and seismology but encounters a persistent challenge known as “cycle-skipping,” causing it to frequently converge to local minima. Wavefield reconstruction inversion (WRI) has emerged as a potential solution to mitigate the risk of cycle skipping. Researchers have provided numerical examples indicating that WRI is less prone to being ensnared in local minima caused by the absence of low-frequency component data and the absence of a well-defined initial model compared with conventional FWI. Despite its potential, the computational demands of WRI have hindered its widespread application, especially in scenarios involving ocean towed streamer seismic acquisition and unknown sources, where the augmented systems differ from source to source. In our study, we introduce a novel approach — sparse curvelet-constrained WRI with source estimation (WRI-SE-CC) — accelerated by graphics processing unit (GPU). Real-time source function estimation is achieved through the variable projection method, and noise-related artifacts are suppressed using sparse curvelet constraints. By optimizing the utilization of hundreds of computation processors within a GPU for parallel computing of matrix-vector multiplications, we present a GPU-based grouped conjugate gradient method to accelerate the computation of WRI-SE-CC. Numerical experiments demonstrate a significant 240-fold acceleration compared with the preconditioned conjugate gradient using one CPU core for computations involving multiple sources. Inversion experiments with the overthrust model demonstrate the capability of our method in mitigating local minima and suppressing noise-related artifacts. Furthermore, we validate the framework on the Chevron 2014 blind test data set, showcasing its effectiveness in addressing practical challenges in the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wkjfh应助畅快的以寒采纳,获得10
刚刚
1秒前
天天快乐应助纳川采纳,获得10
2秒前
YIN完成签到 ,获得积分10
2秒前
火星上夏云完成签到,获得积分10
3秒前
3秒前
花火发布了新的文献求助10
3秒前
路过你的夏完成签到 ,获得积分10
3秒前
lizli2009发布了新的文献求助10
3秒前
静oo完成签到,获得积分10
4秒前
大气的含烟完成签到 ,获得积分10
5秒前
小二郎应助jiahao采纳,获得10
5秒前
善学以致用应助隆中对采纳,获得10
5秒前
月光完成签到 ,获得积分10
5秒前
SciGPT应助云宝采纳,获得10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助30
8秒前
8秒前
李爱国应助强健的糖豆采纳,获得10
9秒前
10秒前
乐观的小馒头完成签到,获得积分10
10秒前
谭续燊完成签到,获得积分10
10秒前
11秒前
MathCheck发布了新的文献求助30
11秒前
深情安青应助May采纳,获得20
11秒前
爱上学的小金完成签到,获得积分10
12秒前
打打应助GAOBIN000采纳,获得10
12秒前
细心行云完成签到,获得积分10
13秒前
ding应助液体剑0932采纳,获得10
13秒前
zhaochenxi完成签到,获得积分10
13秒前
13秒前
打打应助奶奶的龙采纳,获得10
13秒前
执着绿草发布了新的文献求助10
13秒前
14秒前
lll完成签到 ,获得积分10
14秒前
su发布了新的文献求助10
14秒前
15秒前
zzzzzz完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095