A YOLO-based deep learning model for Real-Time face mask detection via drone surveillance in public spaces

无人机 计算机科学 人工智能 更安全的 背景(考古学) 深度学习 计算机视觉 预处理器 人脸检测 目标检测 特征提取 面部识别系统 计算机安全 模式识别(心理学) 遗传学 生物 古生物学
作者
Salama A. Mostafa,Sharran Ravi,Dilovan Asaad Zebari,Nechirvan Asaad Zebari,Mazin Abed Mohammed,Jan Nedoma,Radek Martínek,Muhammet Deveci,Weiping Ding
出处
期刊:Information Sciences [Elsevier BV]
卷期号:676: 120865-120865 被引量:6
标识
DOI:10.1016/j.ins.2024.120865
摘要

Automating face mask detection in public areas is paramount to maintaining public health, especially in the context of the COVID-19 pandemic. Utilization of technologies such as deep learning and computer vision systems enables effective monitoring of mask compliance, thereby minimizing the risk of virus spread. Real-time detection helps in prompt intervention for and enforcement of the use of masks, thereby preventing potential outbreaks and ensuring compliance with public health guidelines. This method helps save human resources and makes the reinforcement of wearing masks in public areas consistent and objective. Automatic detection of face masks serves as a key tool for preventing the spread of contagious diseases, protecting public health, and creating a safer environment for every person. This study addresses the challenges of real-time face mask detection via drone surveillance in public spaces, with reference to three categories: wearing of mask, incorrect wearing of mask, and no mask. Addressing these challenges entails an efficient and robust object detection and recognition algorithm. This algorithm can deal with a crowd of multiple faces via a mobile camera carried by a mini drone, and performs real-time video processing. Accordingly, this study proposes a You Only Look Once (YOLO) based deep learning C-Mask model for real-time face mask detection and recognition via drone surveillance in public spaces. The C-Mask model aims to operate within a mini drone surveillance system and provide efficient and robust face mask detection. The C-Mask model performs preprocessing, feature extraction, feature generation, feature enhancement, feature selection, and multivariate classification tasks for each face mask detection cycle. The preprocessing task prepares the training and testing data in the form of images for further processing. The feature extraction task is performed using a Convolutional Neural Network (CNN). Moreover, Cross-Stage Partial (CSP) DarkNet53 is used to improve the feature extraction and to facilitate the model's object detection ability. A data augmentation algorithm is used for feature generation to enhance the model's training robustness. The feature enhancement task is performed by applying the Path Aggregation Network (PANet) and Spatial Pyramid Pooling Network (SPPNet) algorithms, which are deployed to enhance the extracted and generated features. The classification task is performed through multi-label classification, wherein each object in an image can belong to multiple classes simultaneously, and the network generates a grid of bounding boxes and corresponding confidence scores for each class. The YOLO-based C-Mask model testing is performed by experimenting with various face mask detection scenarios and with varying mask colors and types, to ensure the efficiency and robustness of the proposed model. The C-Mask model test results show that this model can correctly and effectively detect face masks in real-time video streams under various conditions with an overall accuracy of 92.20%, precision of 92.04, recall of 90.83%, and F1-score of 89.95%, for all the three classes. These high scores have been obtained despite mini drone mobility and camera orientation adjustment substantially affecting face mask detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核桃发布了新的文献求助10
刚刚
1秒前
快乐滑板应助MichaelQin采纳,获得10
2秒前
zhou_AGCT完成签到,获得积分10
2秒前
alu发布了新的文献求助10
2秒前
3秒前
星辰大海应助不上课不行采纳,获得10
4秒前
JIAN完成签到 ,获得积分10
4秒前
4秒前
12完成签到,获得积分10
4秒前
王一发布了新的文献求助10
4秒前
Ulrica完成签到,获得积分10
5秒前
5秒前
星辰大海应助fang采纳,获得10
5秒前
Yanxb完成签到,获得积分10
5秒前
5秒前
无际的星空下完成签到,获得积分10
7秒前
7秒前
Yanxb发布了新的文献求助10
7秒前
7秒前
nan完成签到,获得积分10
7秒前
NexusExplorer应助Ripal采纳,获得10
8秒前
二牛发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
11秒前
fanicky发布了新的文献求助10
12秒前
火花完成签到,获得积分10
12秒前
1335804518完成签到 ,获得积分10
12秒前
星星轨迹完成签到,获得积分10
12秒前
研友_VZG7GZ应助和谐晓啸采纳,获得10
13秒前
demon应助芋鱼予郁采纳,获得10
13秒前
13秒前
14秒前
14秒前
完美世界应助QIAO采纳,获得10
14秒前
科研通AI2S应助嵩嵩采纳,获得10
15秒前
金山完成签到,获得积分10
15秒前
彩色的电脑完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951344
求助须知:如何正确求助?哪些是违规求助? 3496706
关于积分的说明 11083953
捐赠科研通 3227150
什么是DOI,文献DOI怎么找? 1784304
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801102