A YOLO-based deep learning model for Real-Time face mask detection via drone surveillance in public spaces

无人机 计算机科学 人工智能 更安全的 背景(考古学) 深度学习 计算机视觉 预处理器 人脸检测 目标检测 特征提取 面部识别系统 计算机安全 模式识别(心理学) 遗传学 生物 古生物学
作者
Salama A. Mostafa,Sharran Ravi,Dilovan Asaad Zebari,Nechirvan Asaad Zebari,Mazin Abed Mohammed,Jan Nedoma,Radek Martínek,Muhammet Deveci,Weiping Ding
出处
期刊:Information Sciences [Elsevier BV]
卷期号:676: 120865-120865 被引量:6
标识
DOI:10.1016/j.ins.2024.120865
摘要

Automating face mask detection in public areas is paramount to maintaining public health, especially in the context of the COVID-19 pandemic. Utilization of technologies such as deep learning and computer vision systems enables effective monitoring of mask compliance, thereby minimizing the risk of virus spread. Real-time detection helps in prompt intervention for and enforcement of the use of masks, thereby preventing potential outbreaks and ensuring compliance with public health guidelines. This method helps save human resources and makes the reinforcement of wearing masks in public areas consistent and objective. Automatic detection of face masks serves as a key tool for preventing the spread of contagious diseases, protecting public health, and creating a safer environment for every person. This study addresses the challenges of real-time face mask detection via drone surveillance in public spaces, with reference to three categories: wearing of mask, incorrect wearing of mask, and no mask. Addressing these challenges entails an efficient and robust object detection and recognition algorithm. This algorithm can deal with a crowd of multiple faces via a mobile camera carried by a mini drone, and performs real-time video processing. Accordingly, this study proposes a You Only Look Once (YOLO) based deep learning C-Mask model for real-time face mask detection and recognition via drone surveillance in public spaces. The C-Mask model aims to operate within a mini drone surveillance system and provide efficient and robust face mask detection. The C-Mask model performs preprocessing, feature extraction, feature generation, feature enhancement, feature selection, and multivariate classification tasks for each face mask detection cycle. The preprocessing task prepares the training and testing data in the form of images for further processing. The feature extraction task is performed using a Convolutional Neural Network (CNN). Moreover, Cross-Stage Partial (CSP) DarkNet53 is used to improve the feature extraction and to facilitate the model's object detection ability. A data augmentation algorithm is used for feature generation to enhance the model's training robustness. The feature enhancement task is performed by applying the Path Aggregation Network (PANet) and Spatial Pyramid Pooling Network (SPPNet) algorithms, which are deployed to enhance the extracted and generated features. The classification task is performed through multi-label classification, wherein each object in an image can belong to multiple classes simultaneously, and the network generates a grid of bounding boxes and corresponding confidence scores for each class. The YOLO-based C-Mask model testing is performed by experimenting with various face mask detection scenarios and with varying mask colors and types, to ensure the efficiency and robustness of the proposed model. The C-Mask model test results show that this model can correctly and effectively detect face masks in real-time video streams under various conditions with an overall accuracy of 92.20%, precision of 92.04, recall of 90.83%, and F1-score of 89.95%, for all the three classes. These high scores have been obtained despite mini drone mobility and camera orientation adjustment substantially affecting face mask detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GibsonYu完成签到,获得积分10
刚刚
MaSaR完成签到,获得积分10
刚刚
小马甲应助云汐儿采纳,获得10
刚刚
1秒前
1秒前
邢夏之发布了新的文献求助10
1秒前
2秒前
3秒前
不二发布了新的文献求助10
3秒前
小蘑菇应助郭志倩采纳,获得10
3秒前
量子星尘发布了新的文献求助150
4秒前
爆米花应助zhz采纳,获得10
5秒前
pywangsmmu92完成签到,获得积分10
5秒前
云汐儿发布了新的文献求助10
6秒前
tannie完成签到 ,获得积分10
6秒前
6秒前
7秒前
pbj完成签到,获得积分10
7秒前
啊啊啊苏完成签到 ,获得积分20
7秒前
7秒前
慎二完成签到 ,获得积分10
9秒前
琵琶完成签到,获得积分10
9秒前
ruby发布了新的文献求助20
10秒前
10秒前
betty2009发布了新的文献求助10
11秒前
粥里完成签到,获得积分10
11秒前
12秒前
呦吼发布了新的文献求助10
12秒前
LRxxx完成签到 ,获得积分10
12秒前
13秒前
针真滴发布了新的文献求助10
13秒前
丁丁丁给丁丁丁的求助进行了留言
14秒前
Zephyr完成签到,获得积分10
14秒前
飞柏完成签到,获得积分10
14秒前
惠么完成签到,获得积分10
15秒前
八百标兵奔南坑完成签到,获得积分10
15秒前
Espoir发布了新的文献求助10
16秒前
背后幻姬发布了新的文献求助10
17秒前
杨家辉完成签到,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911732
求助须知:如何正确求助?哪些是违规求助? 4187158
关于积分的说明 13003078
捐赠科研通 3955101
什么是DOI,文献DOI怎么找? 2168564
邀请新用户注册赠送积分活动 1187030
关于科研通互助平台的介绍 1094282