A YOLO-based deep learning model for Real-Time face mask detection via drone surveillance in public spaces

无人机 计算机科学 人工智能 更安全的 背景(考古学) 深度学习 计算机视觉 预处理器 人脸检测 目标检测 特征提取 面部识别系统 计算机安全 模式识别(心理学) 遗传学 生物 古生物学
作者
Salama A. Mostafa,Sharran Ravi,Dilovan Asaad Zebari,Nechirvan Asaad Zebari,Mazin Abed Mohammed,Jan Nedoma,Radek Martínek,Muhammet Deveci,Weiping Ding
出处
期刊:Information Sciences [Elsevier]
卷期号:676: 120865-120865 被引量:6
标识
DOI:10.1016/j.ins.2024.120865
摘要

Automating face mask detection in public areas is paramount to maintaining public health, especially in the context of the COVID-19 pandemic. Utilization of technologies such as deep learning and computer vision systems enables effective monitoring of mask compliance, thereby minimizing the risk of virus spread. Real-time detection helps in prompt intervention for and enforcement of the use of masks, thereby preventing potential outbreaks and ensuring compliance with public health guidelines. This method helps save human resources and makes the reinforcement of wearing masks in public areas consistent and objective. Automatic detection of face masks serves as a key tool for preventing the spread of contagious diseases, protecting public health, and creating a safer environment for every person. This study addresses the challenges of real-time face mask detection via drone surveillance in public spaces, with reference to three categories: wearing of mask, incorrect wearing of mask, and no mask. Addressing these challenges entails an efficient and robust object detection and recognition algorithm. This algorithm can deal with a crowd of multiple faces via a mobile camera carried by a mini drone, and performs real-time video processing. Accordingly, this study proposes a You Only Look Once (YOLO) based deep learning C-Mask model for real-time face mask detection and recognition via drone surveillance in public spaces. The C-Mask model aims to operate within a mini drone surveillance system and provide efficient and robust face mask detection. The C-Mask model performs preprocessing, feature extraction, feature generation, feature enhancement, feature selection, and multivariate classification tasks for each face mask detection cycle. The preprocessing task prepares the training and testing data in the form of images for further processing. The feature extraction task is performed using a Convolutional Neural Network (CNN). Moreover, Cross-Stage Partial (CSP) DarkNet53 is used to improve the feature extraction and to facilitate the model's object detection ability. A data augmentation algorithm is used for feature generation to enhance the model's training robustness. The feature enhancement task is performed by applying the Path Aggregation Network (PANet) and Spatial Pyramid Pooling Network (SPPNet) algorithms, which are deployed to enhance the extracted and generated features. The classification task is performed through multi-label classification, wherein each object in an image can belong to multiple classes simultaneously, and the network generates a grid of bounding boxes and corresponding confidence scores for each class. The YOLO-based C-Mask model testing is performed by experimenting with various face mask detection scenarios and with varying mask colors and types, to ensure the efficiency and robustness of the proposed model. The C-Mask model test results show that this model can correctly and effectively detect face masks in real-time video streams under various conditions with an overall accuracy of 92.20%, precision of 92.04, recall of 90.83%, and F1-score of 89.95%, for all the three classes. These high scores have been obtained despite mini drone mobility and camera orientation adjustment substantially affecting face mask detection performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZY完成签到 ,获得积分10
1秒前
Hello应助冷彬采纳,获得10
1秒前
安雯完成签到 ,获得积分10
1秒前
1秒前
小蘑菇应助123采纳,获得10
1秒前
天真有邪发布了新的文献求助10
1秒前
1秒前
pp发布了新的文献求助200
2秒前
12完成签到,获得积分10
2秒前
cz完成签到,获得积分10
2秒前
2秒前
lucky完成签到,获得积分10
2秒前
优雅妙松完成签到,获得积分10
2秒前
kingwill发布了新的文献求助30
3秒前
markowits完成签到,获得积分10
3秒前
3秒前
11110发布了新的文献求助20
4秒前
4秒前
RQ完成签到 ,获得积分10
4秒前
QIAN发布了新的文献求助10
4秒前
4秒前
tree发布了新的文献求助10
5秒前
mumuaidafu发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
星球日记发布了新的文献求助10
8秒前
夺将发布了新的文献求助10
8秒前
桐桐应助婷婷婷不停采纳,获得10
9秒前
CR7应助崔崔采纳,获得20
9秒前
ding应助xu采纳,获得10
9秒前
10秒前
10秒前
李健的小迷弟应助Jane采纳,获得10
10秒前
10秒前
10秒前
阿斯顿完成签到,获得积分10
11秒前
11秒前
天真有邪完成签到,获得积分10
11秒前
烂漫百招发布了新的文献求助10
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588355
求助须知:如何正确求助?哪些是违规求助? 4671484
关于积分的说明 14787308
捐赠科研通 4625063
什么是DOI,文献DOI怎么找? 2531787
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468300