A YOLO-based deep learning model for Real-Time face mask detection via drone surveillance in public spaces

无人机 计算机科学 人工智能 更安全的 背景(考古学) 深度学习 计算机视觉 预处理器 人脸检测 目标检测 特征提取 面部识别系统 计算机安全 模式识别(心理学) 遗传学 生物 古生物学
作者
Salama A. Mostafa,Sharran Ravi,Dilovan Asaad Zebari,Nechirvan Asaad Zebari,Mazin Abed Mohammed,Jan Nedoma,Radek Martínek,Muhammet Deveci,Weiping Ding
出处
期刊:Information Sciences [Elsevier]
卷期号:676: 120865-120865 被引量:2
标识
DOI:10.1016/j.ins.2024.120865
摘要

Automating face mask detection in public areas is paramount to maintaining public health, especially in the context of the COVID-19 pandemic. Utilization of technologies such as deep learning and computer vision systems enables effective monitoring of mask compliance, thereby minimizing the risk of virus spread. Real-time detection helps in prompt intervention for and enforcement of the use of masks, thereby preventing potential outbreaks and ensuring compliance with public health guidelines. This method helps save human resources and makes the reinforcement of wearing masks in public areas consistent and objective. Automatic detection of face masks serves as a key tool for preventing the spread of contagious diseases, protecting public health, and creating a safer environment for every person. This study addresses the challenges of real-time face mask detection via drone surveillance in public spaces, with reference to three categories: wearing of mask, incorrect wearing of mask, and no mask. Addressing these challenges entails an efficient and robust object detection and recognition algorithm. This algorithm can deal with a crowd of multiple faces via a mobile camera carried by a mini drone, and performs real-time video processing. Accordingly, this study proposes a You Only Look Once (YOLO) based deep learning C-Mask model for real-time face mask detection and recognition via drone surveillance in public spaces. The C-Mask model aims to operate within a mini drone surveillance system and provide efficient and robust face mask detection. The C-Mask model performs preprocessing, feature extraction, feature generation, feature enhancement, feature selection, and multivariate classification tasks for each face mask detection cycle. The preprocessing task prepares the training and testing data in the form of images for further processing. The feature extraction task is performed using a Convolutional Neural Network (CNN). Moreover, Cross-Stage Partial (CSP) DarkNet53 is used to improve the feature extraction and to facilitate the model's object detection ability. A data augmentation algorithm is used for feature generation to enhance the model's training robustness. The feature enhancement task is performed by applying the Path Aggregation Network (PANet) and Spatial Pyramid Pooling Network (SPPNet) algorithms, which are deployed to enhance the extracted and generated features. The classification task is performed through multi-label classification, wherein each object in an image can belong to multiple classes simultaneously, and the network generates a grid of bounding boxes and corresponding confidence scores for each class. The YOLO-based C-Mask model testing is performed by experimenting with various face mask detection scenarios and with varying mask colors and types, to ensure the efficiency and robustness of the proposed model. The C-Mask model test results show that this model can correctly and effectively detect face masks in real-time video streams under various conditions with an overall accuracy of 92.20%, precision of 92.04, recall of 90.83%, and F1-score of 89.95%, for all the three classes. These high scores have been obtained despite mini drone mobility and camera orientation adjustment substantially affecting face mask detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助hu970采纳,获得10
1秒前
kk2024应助今天真暖采纳,获得20
1秒前
Brandy完成签到,获得积分10
1秒前
春景当思完成签到,获得积分10
1秒前
lyon发布了新的文献求助10
1秒前
2秒前
背后的广山完成签到,获得积分10
2秒前
Jiancui发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
体贴啤酒完成签到,获得积分10
3秒前
Ll发布了新的文献求助10
3秒前
4秒前
JOJO完成签到,获得积分10
4秒前
杭新晴完成签到 ,获得积分10
4秒前
淡然的日记本完成签到,获得积分10
4秒前
南方姑娘完成签到,获得积分10
5秒前
虚拟莫茗发布了新的文献求助20
5秒前
5秒前
6秒前
威武忆山完成签到 ,获得积分10
6秒前
凡而不庸举报有魅力发卡求助涉嫌违规
6秒前
壮观的访枫完成签到,获得积分10
6秒前
富婆嘉嘉子完成签到,获得积分10
6秒前
Healer完成签到 ,获得积分10
6秒前
羊羊发布了新的文献求助10
6秒前
JOJO发布了新的文献求助10
7秒前
8秒前
岁月轮回发布了新的文献求助10
8秒前
8秒前
送不送书7完成签到,获得积分10
8秒前
蘑菇发布了新的文献求助10
9秒前
9秒前
看火人完成签到 ,获得积分10
9秒前
9秒前
小蘑菇应助自然采纳,获得10
10秒前
非常可爱完成签到 ,获得积分20
10秒前
DONGJUN完成签到,获得积分10
10秒前
霍霍完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672