Towards long-tailed, multi-label disease classification from chest X-ray: Overview of the CXR-LT challenge

水准点(测量) 多标签分类 人工智能 机器学习 计算机科学 医学影像学 疾病 医学 模式识别(心理学) 病理 地理 地图学
作者
Gregory Holste,Yiliang Zhou,Song Wang,Ajay Jaiswal,Mingquan Lin,Sherry Zhuge,Yuzhe Yang,Dongkyun Kim,Trong-Hieu Nguyen-Mau,Minh–Triet Tran,Jaehyup Jeong,Wongi Park,Jongbin Ryu,Feng Hong,Arsh Verma,Yosuke Yamagishi,Chang-Hyun Kim,Hyeryeong Seo,Myungjoo Kang,Leo Anthony Celi,Zhiyong Lu,Ronald M. Summers,George Shih,Zhangyang Wang,Yifan Peng
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103224-103224 被引量:5
标识
DOI:10.1016/j.media.2024.103224
摘要

Many real-world image recognition problems, such as diagnostic medical imaging exams, are "long-tailed" - there are a few common findings followed by many more relatively rare conditions. In chest radiography, diagnosis is both a long-tailed and multi-label problem, as patients often present with multiple findings simultaneously. While researchers have begun to study the problem of long-tailed learning in medical image recognition, few have studied the interaction of label imbalance and label co-occurrence posed by long-tailed, multi-label disease classification. To engage with the research community on this emerging topic, we conducted an open challenge, CXR-LT, on long-tailed, multi-label thorax disease classification from chest X-rays (CXRs). We publicly release a large-scale benchmark dataset of over 350,000 CXRs, each labeled with at least one of 26 clinical findings following a long-tailed distribution. We synthesize common themes of top-performing solutions, providing practical recommendations for long-tailed, multi-label medical image classification. Finally, we use these insights to propose a path forward involving vision-language foundation models for few- and zero-shot disease classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
zanie完成签到,获得积分10
刚刚
jasmine完成签到 ,获得积分10
1秒前
小苑完成签到,获得积分10
1秒前
鲸落发布了新的文献求助10
1秒前
机灵的醉山完成签到,获得积分10
1秒前
安静代萱完成签到 ,获得积分10
2秒前
2秒前
2秒前
清爽伯云应助卜钊采纳,获得10
3秒前
black发布了新的文献求助10
4秒前
无心的浩轩完成签到,获得积分10
4秒前
852应助zanie采纳,获得10
4秒前
海波完成签到,获得积分10
4秒前
科研小白发布了新的文献求助10
5秒前
充电宝应助小苑采纳,获得10
5秒前
qqwdss完成签到,获得积分10
6秒前
小北完成签到 ,获得积分10
6秒前
6秒前
慕青应助andrewliu采纳,获得30
6秒前
6秒前
LaLaC完成签到,获得积分10
7秒前
derrrrrsin完成签到,获得积分10
7秒前
7秒前
anubisi发布了新的文献求助10
7秒前
8秒前
润润完成签到 ,获得积分10
8秒前
安静的飞薇完成签到,获得积分10
8秒前
坦率的嫣娆完成签到,获得积分20
8秒前
Lxx完成签到,获得积分10
9秒前
彭于晏应助阿森采纳,获得10
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
九九完成签到,获得积分10
11秒前
ZZ发布了新的文献求助10
11秒前
yyy发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604729
求助须知:如何正确求助?哪些是违规求助? 4012976
关于积分的说明 12425700
捐赠科研通 3693576
什么是DOI,文献DOI怎么找? 2036429
邀请新用户注册赠送积分活动 1069421
科研通“疑难数据库(出版商)”最低求助积分说明 953917