Towards long-tailed, multi-label disease classification from chest X-ray: Overview of the CXR-LT challenge

水准点(测量) 多标签分类 人工智能 机器学习 计算机科学 医学影像学 疾病 医学 模式识别(心理学) 病理 地理 地图学
作者
Gregory Holste,Yiliang Zhou,Song Wang,Ajay Jaiswal,Mingquan Lin,Sherry Zhuge,Yuzhe Yang,Dongkyun Kim,Trong-Hieu Nguyen-Mau,Minh–Triet Tran,Jaehyup Jeong,Wongi Park,Jongbin Ryu,Feng Hong,Arsh Verma,Yosuke Yamagishi,Changhyun Kim,Hong-Deok Seo,Myungjoo Kang,Leo Anthony Celi,Zhiyong Lu,Ronald M. Summers,George Shih,Zhangyang Wang,Yifan Peng
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103224-103224 被引量:1
标识
DOI:10.1016/j.media.2024.103224
摘要

Many real-world image recognition problems, such as diagnostic medical imaging exams, are "long-tailed" - there are a few common findings followed by many more relatively rare conditions. In chest radiography, diagnosis is both a long-tailed and multi-label problem, as patients often present with multiple findings simultaneously. While researchers have begun to study the problem of long-tailed learning in medical image recognition, few have studied the interaction of label imbalance and label co-occurrence posed by long-tailed, multi-label disease classification. To engage with the research community on this emerging topic, we conducted an open challenge, CXR-LT, on long-tailed, multi-label thorax disease classification from chest X-rays (CXRs). We publicly release a large-scale benchmark dataset of over 350,000 CXRs, each labeled with at least one of 26 clinical findings following a long-tailed distribution. We synthesize common themes of top-performing solutions, providing practical recommendations for long-tailed, multi-label medical image classification. Finally, we use these insights to propose a path forward involving vision-language foundation models for few- and zero-shot disease classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jay完成签到,获得积分20
刚刚
40873完成签到,获得积分10
1秒前
Reese完成签到 ,获得积分10
2秒前
3秒前
大月发布了新的文献求助20
4秒前
徐1发布了新的文献求助10
6秒前
顺利煎蛋应助Jay采纳,获得30
7秒前
哎嘿应助asdfghjkl采纳,获得10
7秒前
moon123完成签到,获得积分10
8秒前
9秒前
wuminhui完成签到,获得积分10
9秒前
可心完成签到,获得积分20
10秒前
勇哥哥完成签到,获得积分10
12秒前
彭于晏应助我的miemie采纳,获得10
13秒前
15秒前
16秒前
柚子完成签到,获得积分10
18秒前
Jasper应助jjjwln采纳,获得10
19秒前
大月完成签到,获得积分20
20秒前
21秒前
科研小肖发布了新的文献求助20
23秒前
zcj完成签到,获得积分10
24秒前
24秒前
healer完成签到,获得积分10
25秒前
3AM完成签到,获得积分10
25秒前
26秒前
学术射手完成签到,获得积分10
26秒前
26秒前
27秒前
竹筏过海应助一逗采纳,获得30
30秒前
31秒前
爆米花应助suntee采纳,获得10
32秒前
InfoNinja应助suntee采纳,获得30
32秒前
天天快乐应助suntee采纳,获得10
32秒前
烟花应助AAAAAAAAAAA采纳,获得10
34秒前
lehha完成签到,获得积分10
35秒前
怡然沅完成签到,获得积分10
37秒前
静俏完成签到,获得积分20
37秒前
Steplan完成签到 ,获得积分10
38秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152014
求助须知:如何正确求助?哪些是违规求助? 2803297
关于积分的说明 7853218
捐赠科研通 2460777
什么是DOI,文献DOI怎么找? 1310024
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601765