Deep Learning Approach for Driver Speed Intention Recognition Based on Naturalistic Driving Data

计算机科学 人工智能 深度学习 人机交互 心理学
作者
Kun Cheng,Dongye Sun,Junhang Jian,Datong Qin,Chong Chen,Guangliang Liao,Yingzhe Kan,Chang Xiu Lv
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 14546-14559 被引量:1
标识
DOI:10.1109/tits.2024.3398083
摘要

Recognizing driver speed intention such as acceleration and deceleration is of great significance for intelligent assisted driving systems, drive energy management, and gear decision of automatic transmissions, among other applications. However, existing studies have mainly focused on recognizing only a few typical speed intentions. They have not adequately considered the effects of various factors of the driving environment, including road slopes, curves, as well as other critical factors like lane changes and vehicle gears, on intention recognition. To address this gap, this study comprehensively categorizes speed intentions and establishes a speed intention recognition model that considers the influence of these factors. First, naturalistic driving data is collected to ensure the robustness and practicality of the model. To integrate the effects of the driving environment into speed intention recognition, the road slope and turning/lane-changing operations of the driver are extracted from driving data. Furthermore, the speed intention is comprehensively categorized. The effects of road slope, vehicle gear, and turning/lane changing on the intention recognition are analyzed separately, and the Toeplitz inverse covariance-based clustering algorithm is used to label the driving data while considering these effects. Finally, a supervised feature selection algorithm is used to select intention recognition features, and a deep-learning-based hierarchical recognition model is established for speed intentions. Validation results indicate that the constructed intention recognition model exhibits excellent recognition performance and satisfies the requirements for real-time recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小怪兽完成签到,获得积分10
刚刚
肖珂发布了新的文献求助10
1秒前
upandcoming完成签到,获得积分10
2秒前
3秒前
伶俐绮发布了新的文献求助10
3秒前
3秒前
乐乐应助陈一冲采纳,获得10
3秒前
玛卡巴卡发布了新的文献求助10
4秒前
4秒前
何以解忧发布了新的文献求助10
4秒前
小二郎应助古月采纳,获得10
4秒前
5秒前
阿莫仙完成签到,获得积分10
6秒前
6秒前
6秒前
harry2021完成签到,获得积分10
6秒前
FANTASY完成签到,获得积分20
6秒前
7秒前
李6666发布了新的文献求助10
7秒前
闪闪完成签到,获得积分10
8秒前
柠檬水加冰应助又见三皮采纳,获得10
8秒前
biopyx完成签到,获得积分10
8秒前
小小铱发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
cfer发布了新的文献求助10
12秒前
在水一方应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
ding应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得30
13秒前
wangruize完成签到,获得积分10
13秒前
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975986
求助须知:如何正确求助?哪些是违规求助? 3520289
关于积分的说明 11202025
捐赠科研通 3256778
什么是DOI,文献DOI怎么找? 1798453
邀请新用户注册赠送积分活动 877605
科研通“疑难数据库(出版商)”最低求助积分说明 806482