亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Approach for Driver Speed Intention Recognition Based on Naturalistic Driving Data

计算机科学 人工智能 深度学习 人机交互 心理学
作者
Kun Cheng,Dongye Sun,Junhang Jian,Datong Qin,Chong Chen,Guangliang Liao,Yingzhe Kan,Chang Xiu Lv
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 14546-14559 被引量:1
标识
DOI:10.1109/tits.2024.3398083
摘要

Recognizing driver speed intention such as acceleration and deceleration is of great significance for intelligent assisted driving systems, drive energy management, and gear decision of automatic transmissions, among other applications. However, existing studies have mainly focused on recognizing only a few typical speed intentions. They have not adequately considered the effects of various factors of the driving environment, including road slopes, curves, as well as other critical factors like lane changes and vehicle gears, on intention recognition. To address this gap, this study comprehensively categorizes speed intentions and establishes a speed intention recognition model that considers the influence of these factors. First, naturalistic driving data is collected to ensure the robustness and practicality of the model. To integrate the effects of the driving environment into speed intention recognition, the road slope and turning/lane-changing operations of the driver are extracted from driving data. Furthermore, the speed intention is comprehensively categorized. The effects of road slope, vehicle gear, and turning/lane changing on the intention recognition are analyzed separately, and the Toeplitz inverse covariance-based clustering algorithm is used to label the driving data while considering these effects. Finally, a supervised feature selection algorithm is used to select intention recognition features, and a deep-learning-based hierarchical recognition model is established for speed intentions. Validation results indicate that the constructed intention recognition model exhibits excellent recognition performance and satisfies the requirements for real-time recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
sun发布了新的文献求助10
9秒前
乔一一发布了新的文献求助10
12秒前
26秒前
量子星尘发布了新的文献求助10
35秒前
43秒前
小二郎应助Marco_hxkq采纳,获得10
47秒前
科研通AI5应助sun采纳,获得10
48秒前
52秒前
55秒前
sun发布了新的文献求助10
58秒前
1分钟前
852应助乔一一采纳,获得10
1分钟前
islazheng发布了新的文献求助100
1分钟前
1分钟前
islazheng完成签到,获得积分10
1分钟前
烟花应助sun采纳,获得10
1分钟前
1分钟前
稀饭发布了新的文献求助10
1分钟前
Marco_hxkq发布了新的文献求助10
1分钟前
1分钟前
1分钟前
sun发布了新的文献求助10
1分钟前
1分钟前
yangjian发布了新的文献求助30
1分钟前
random完成签到 ,获得积分10
1分钟前
jxz完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
yangjian完成签到,获得积分10
2分钟前
2分钟前
优美的梦玉完成签到,获得积分10
2分钟前
2分钟前
科研通AI5应助sun采纳,获得10
2分钟前
渥鸡蛋完成签到,获得积分10
2分钟前
2分钟前
sun发布了新的文献求助10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952327
求助须知:如何正确求助?哪些是违规求助? 4215067
关于积分的说明 13110928
捐赠科研通 3996934
什么是DOI,文献DOI怎么找? 2187720
邀请新用户注册赠送积分活动 1202971
关于科研通互助平台的介绍 1115712