Adaptive Fusion Transfer Learning-based Digital Multitwin-assised Intelligent Fault Diagnosis

学习迁移 计算机科学 断层(地质) 人工智能 融合 数字化学习 多媒体 地质学 地震学 语言学 哲学
作者
Sizhe Liu,Yongsheng Qi,Liqiang Liu,Ran Ma,Dongze Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:297: 111923-111923 被引量:3
标识
DOI:10.1016/j.knosys.2024.111923
摘要

With the development of digital twin technology, mechanical failures can be more comprehensively described through the interaction between sensors and twin models, which thereby demonstrate significant potential in fault diagnosis. However, due to the limitations of modeling methods, digital twin model construction poses challenges and exhibits poor generalization, making it difficult to apply across domains. To address these issues, this paper proposes a digital multitwin fusion diagnostic algorithm based on transfer learning. The digital multitwin comprise the source domain mechanistic twin, the target domain distributional feature 1D Auxiliary Classifier GAN (1D-ACGAN) twin, and the target domain time-series feature shared weight stacking LSTM (SWSLSTM) twin. First, based on the fault features collected by multiple sensors in the mechanism twin, a multichannel, multiscale mid-fusion diagnostic network is constructed. Second, the network is hierarchically transferred to the target domain network using a frozen transfer technique, automatically finding the optimal network parameters. Furthermore, to enhance the data quality, a data twin composed of the SWSLSTM twin and 1D-ACGAN twin is proposed to capture the dependency relationships of target domain data features. Finally, the migrated network adaptively adjusts the generated samples of the data twin based on the designed indicators, achieving high-precision cross-domain application of the multitwin diagnostic model. The proposed algorithm has been validated utilising data from triple-piston pumps and openly accessible bearing datasets, achieving diagnostic accuracies of 91.6% and 95.28%, respectively. These results substantiate the efficacy of the algorithm, demonstrating its superior generalisation capability and robustness in comparison to extant classical methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陈思杰完成签到,获得积分10
1秒前
2秒前
昵称被注册完了完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
林夏发布了新的文献求助10
4秒前
赘婿应助hajy采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
橘子味汽水完成签到 ,获得积分10
5秒前
wawa发布了新的文献求助10
6秒前
不lex2之发布了新的文献求助10
6秒前
maox1aoxin应助陈云采纳,获得30
6秒前
蓝桉发布了新的文献求助60
7秒前
七个小矮人完成签到,获得积分10
7秒前
桐桐应助漂亮雅香采纳,获得10
8秒前
漂泊发布了新的文献求助30
8秒前
淡竹完成签到,获得积分10
8秒前
华仔应助白菜采纳,获得10
9秒前
lllllllll发布了新的文献求助10
9秒前
qiyun完成签到,获得积分10
9秒前
乐观的雨发布了新的文献求助10
9秒前
李健的粉丝团团长应助iu采纳,获得10
9秒前
chengli发布了新的文献求助10
10秒前
Charon发布了新的文献求助10
11秒前
李爱国应助jscr采纳,获得10
11秒前
13秒前
整齐以亦完成签到,获得积分10
13秒前
hjx完成签到,获得积分10
13秒前
14秒前
昏睡的傲旋完成签到,获得积分20
14秒前
从容若男发布了新的文献求助10
15秒前
15秒前
15秒前
加减乘除发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199