Regulation of d‐Orbital Electron in Fe‐N4 by High‐Entropy Atomic Clusters for Highly Active and Durable Oxygen Reduction Reaction

材料科学 氧还原反应 电子 氧气 原子物理学 化学物理 纳米技术 物理 量子力学 电极 电化学
作者
Gege Yang,Hairui Cai,Nan Zhang,Bin Wang,Chao Liang,Shengli Zhang,Zhimao Yang,Shengchun Yang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (46) 被引量:9
标识
DOI:10.1002/adfm.202407775
摘要

Abstract Simultaneously improving activity and stability is a crucial yet challenge in the development of metallic single‐atom‐based catalysts. In current work, a novel approach is introduced to address this issue by combining post‐adsorption and secondary pyrolysis techniques to create a synergistic catalytic system, in which the single atoms (SAs) Fe sites played in the NC matrix (Fe─NC) are coupled with high‐entropy atomic clusters (HEACs). Theoretical calculations reveal that the incorporation of HEACs lead to a rehybridization of the 3d orbital configuration of Fe‐N 4 , which helps to balance the adsorption/desorption energy of oxygenated intermediates. In situ spectroscopy further reveals that the rate‐limiting step of OH * desorption on HEAC/Fe─NC in oxygen reduction reaction (ORR) is more facile compared to atomic Fe─NC, implying a higher ORR activity. Moreover, the synergistic effect of diffusion activation barriers and configuration entropy contributes to the structural stability of HEAC/Fe─NC, resulting in remarkable durability. Consequently, this unique catalyst exhibits half‐wave potentials of 0.927 and 0.828 V in an aqueous solution of KOH (0.1 m ) and HClO 4 (0.1 m ), respectively, along with excellent durability. The findings propose a novel strategy for modulating the electronic structure of metallic SAs catalysts and enhancing their stability through strong interactions between SAs and HEACs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
cc完成签到,获得积分10
2秒前
yidi01完成签到,获得积分10
4秒前
CipherSage应助淡淡采纳,获得10
4秒前
桐桐应助酸奶鱼采纳,获得10
5秒前
田攀发布了新的文献求助10
5秒前
wsj发布了新的文献求助10
5秒前
Cc发布了新的文献求助10
5秒前
shiiiny发布了新的文献求助10
6秒前
幽默涟妖发布了新的文献求助10
6秒前
7秒前
cc发布了新的文献求助10
8秒前
科研通AI6应助hzs采纳,获得10
8秒前
故渊丶完成签到 ,获得积分10
8秒前
Zzzzzzz发布了新的文献求助10
9秒前
情怀应助潇洒的如松采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
熊尼完成签到,获得积分20
11秒前
打打应助mdjinij采纳,获得10
11秒前
12秒前
李博士发布了新的文献求助10
12秒前
哈哈应助叶夜南采纳,获得10
13秒前
14秒前
小翼完成签到,获得积分10
16秒前
哈哈应助叶夜南采纳,获得10
16秒前
17秒前
17秒前
小二郎应助shiiiny采纳,获得10
19秒前
391X小king发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
小二郎应助漂亮的哈密瓜采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648687
求助须知:如何正确求助?哪些是违规求助? 4775962
关于积分的说明 15044928
捐赠科研通 4807596
什么是DOI,文献DOI怎么找? 2570889
邀请新用户注册赠送积分活动 1527662
关于科研通互助平台的介绍 1486570