DSBEAN: An innovative framework for intelligent soybean breeding phenotype analysis based on various main stem structures and deep learning methods

表型 工程类 深度学习 人工智能 生物 计算机科学 遗传学 基因
作者
Zhe Zhang,Xiu Jin,Yuan Rao,Tianyu Wan,Xiaobo Wang,Jiajia Li,Hao Chen,Kanglei Wu,Fanchen Kong,Zhuo Tian,Xing Shao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:224: 109135-109135 被引量:4
标识
DOI:10.1016/j.compag.2024.109135
摘要

Although computer vision technology has demonstrated significant efficiency in rapidly identifying soybean phenotypic traits, traditional methods still effective in accurately distinguishing certain complex phenotypes. To further advance the analysis of soybean phenotypic traits, this study proposed the DSBEAN framework that combined soybean breeding technology and deep learning algorithms from a new perspective to analyze soybean phenotypic traits. The key components of DSBEAN framework were two innovative evaluation indicators: the length ratio of the pod growth area to the main stem (MLR) and the pod density within the pod growth area (PD), which were essential for refining understanding and analysis of soybean phenotypic traits in computer vision perspective. The DSBEAN framework consisted of three sections: 1) Main stem Node Detection and PGA Identification. An improved YOLOv5s model was designed for soybean main stem node detection, pod coordinate extraction, and pod growth area (PGA) partition. 2) Main stem Segmentation. The U-Net model was employed for soybean main stem segmentation. 3) MLR and PD Extraction: The previously identified soybean phenotypes were used to calculate the MLR and PD. To validate the DSBEAN framework, a new soybean image and label dataset (SILD) was constructed, and diverse comparison experiments were performed. From the experimental results, the number of pods predicted based on MLR, PD, and the number of main stem nodes reached a correlation level of 0.93, highlighting the significant potential of the DSBEAN framework for soybean phenotype identification. In addition, the proposed framework had the potential to provide new directions for phenotype identification of other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九粒完成签到,获得积分10
刚刚
可爱的函函应助NO0809采纳,获得10
刚刚
1秒前
ukmy完成签到,获得积分10
1秒前
zuolan完成签到,获得积分10
3秒前
科目三应助火星上夜云采纳,获得10
3秒前
ukmy发布了新的文献求助10
4秒前
lll完成签到 ,获得积分10
4秒前
所所应助稳重的悟空采纳,获得10
5秒前
折颜发布了新的文献求助10
5秒前
丘比特应助hyr采纳,获得10
6秒前
7秒前
8秒前
9秒前
FashionBoy应助flippedaaa采纳,获得10
9秒前
shangyu66完成签到,获得积分10
10秒前
书剑飞侠完成签到,获得积分10
10秒前
酷波er应助犹豫的踏歌采纳,获得10
10秒前
闰土完成签到,获得积分10
11秒前
聪明大炮完成签到,获得积分10
11秒前
keke发布了新的文献求助10
12秒前
yq发布了新的文献求助10
12秒前
12秒前
看不了一点文献给lululuao的求助进行了留言
13秒前
13秒前
领导范儿应助胡宇采纳,获得10
14秒前
16秒前
bkagyin应助折颜采纳,获得10
16秒前
16秒前
NOOT发布了新的文献求助10
16秒前
英俊的铭应助踏雪飞鸿采纳,获得10
17秒前
天天快乐应助清梦采纳,获得10
18秒前
18秒前
番番完成签到,获得积分10
18秒前
hyr发布了新的文献求助10
19秒前
awen发布了新的文献求助10
22秒前
刘智山完成签到 ,获得积分10
22秒前
聪慧小霜应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得30
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980408
求助须知:如何正确求助?哪些是违规求助? 3524319
关于积分的说明 11220990
捐赠科研通 3261764
什么是DOI,文献DOI怎么找? 1800909
邀请新用户注册赠送积分活动 879424
科研通“疑难数据库(出版商)”最低求助积分说明 807261