清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DSBEAN: An innovative framework for intelligent soybean breeding phenotype analysis based on various main stem structures and deep learning methods

表型 工程类 深度学习 人工智能 生物 计算机科学 遗传学 基因
作者
Zhe Zhang,Xiu Jin,Yuan Rao,Tianyu Wan,Xiaobo Wang,Jiajia Li,Hao Chen,Kanglei Wu,Fanchen Kong,Zhuo Tian,Xing Shao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:224: 109135-109135 被引量:4
标识
DOI:10.1016/j.compag.2024.109135
摘要

Although computer vision technology has demonstrated significant efficiency in rapidly identifying soybean phenotypic traits, traditional methods still effective in accurately distinguishing certain complex phenotypes. To further advance the analysis of soybean phenotypic traits, this study proposed the DSBEAN framework that combined soybean breeding technology and deep learning algorithms from a new perspective to analyze soybean phenotypic traits. The key components of DSBEAN framework were two innovative evaluation indicators: the length ratio of the pod growth area to the main stem (MLR) and the pod density within the pod growth area (PD), which were essential for refining understanding and analysis of soybean phenotypic traits in computer vision perspective. The DSBEAN framework consisted of three sections: 1) Main stem Node Detection and PGA Identification. An improved YOLOv5s model was designed for soybean main stem node detection, pod coordinate extraction, and pod growth area (PGA) partition. 2) Main stem Segmentation. The U-Net model was employed for soybean main stem segmentation. 3) MLR and PD Extraction: The previously identified soybean phenotypes were used to calculate the MLR and PD. To validate the DSBEAN framework, a new soybean image and label dataset (SILD) was constructed, and diverse comparison experiments were performed. From the experimental results, the number of pods predicted based on MLR, PD, and the number of main stem nodes reached a correlation level of 0.93, highlighting the significant potential of the DSBEAN framework for soybean phenotype identification. In addition, the proposed framework had the potential to provide new directions for phenotype identification of other crops.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangsan完成签到,获得积分10
53秒前
woxinyouyou完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
blueskyzhi完成签到,获得积分10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
NattyPoe应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助phd采纳,获得10
1分钟前
phd发布了新的文献求助10
2分钟前
李爱国应助phd采纳,获得10
2分钟前
2分钟前
所所应助Developing_human采纳,获得10
3分钟前
丹布里完成签到,获得积分10
3分钟前
丹布里发布了新的文献求助10
3分钟前
yl完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
1437594843完成签到 ,获得积分10
4分钟前
冷酷的溜溜梅完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
赘婿应助科研通管家采纳,获得10
5分钟前
小糊涂仙儿完成签到 ,获得积分10
5分钟前
梅溪湖的提词器完成签到,获得积分10
5分钟前
笑傲完成签到,获得积分10
5分钟前
5分钟前
桃七发布了新的文献求助10
6分钟前
上官若男应助Developing_human采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
wy.he应助桃七采纳,获得10
6分钟前
sam42发布了新的文献求助10
7分钟前
科研通AI6应助Yatagarasu采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644947
求助须知:如何正确求助?哪些是违规求助? 4766528
关于积分的说明 15025981
捐赠科研通 4803298
什么是DOI,文献DOI怎么找? 2568190
邀请新用户注册赠送积分活动 1525630
关于科研通互助平台的介绍 1485175