DSBEAN: An innovative framework for intelligent soybean breeding phenotype analysis based on various main stem structures and deep learning methods

表型 工程类 深度学习 人工智能 生物 计算机科学 遗传学 基因
作者
Zhe Zhang,Xiu Jin,Yuan Rao,Tianyu Wan,Xiaobo Wang,Jiajia Li,Hao Chen,Kanglei Wu,Fanchen Kong,Zhuo Tian,Xing Shao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:224: 109135-109135 被引量:4
标识
DOI:10.1016/j.compag.2024.109135
摘要

Although computer vision technology has demonstrated significant efficiency in rapidly identifying soybean phenotypic traits, traditional methods still effective in accurately distinguishing certain complex phenotypes. To further advance the analysis of soybean phenotypic traits, this study proposed the DSBEAN framework that combined soybean breeding technology and deep learning algorithms from a new perspective to analyze soybean phenotypic traits. The key components of DSBEAN framework were two innovative evaluation indicators: the length ratio of the pod growth area to the main stem (MLR) and the pod density within the pod growth area (PD), which were essential for refining understanding and analysis of soybean phenotypic traits in computer vision perspective. The DSBEAN framework consisted of three sections: 1) Main stem Node Detection and PGA Identification. An improved YOLOv5s model was designed for soybean main stem node detection, pod coordinate extraction, and pod growth area (PGA) partition. 2) Main stem Segmentation. The U-Net model was employed for soybean main stem segmentation. 3) MLR and PD Extraction: The previously identified soybean phenotypes were used to calculate the MLR and PD. To validate the DSBEAN framework, a new soybean image and label dataset (SILD) was constructed, and diverse comparison experiments were performed. From the experimental results, the number of pods predicted based on MLR, PD, and the number of main stem nodes reached a correlation level of 0.93, highlighting the significant potential of the DSBEAN framework for soybean phenotype identification. In addition, the proposed framework had the potential to provide new directions for phenotype identification of other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
jeff完成签到,获得积分10
2秒前
59关闭了59文献求助
2秒前
可耐的嫣娆完成签到,获得积分10
6秒前
无花果应助hzz采纳,获得10
6秒前
音悦台发布了新的文献求助30
7秒前
10秒前
threewei完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
清欢完成签到 ,获得积分10
12秒前
13秒前
xixun关注了科研通微信公众号
13秒前
14秒前
14秒前
解语花发布了新的文献求助50
15秒前
啊啊啊完成签到,获得积分10
16秒前
小琛完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
20秒前
20秒前
36038138完成签到 ,获得积分10
22秒前
XRenaissance发布了新的文献求助10
23秒前
搬砖发布了新的文献求助10
24秒前
24秒前
酱紫完成签到 ,获得积分10
24秒前
淡定妙海发布了新的文献求助10
24秒前
NexusExplorer应助盖世汤圆采纳,获得20
25秒前
25秒前
Azyyyy完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助30
26秒前
26秒前
陈昇发布了新的文献求助10
26秒前
cccf发布了新的文献求助100
27秒前
28秒前
冯俊驰发布了新的文献求助10
29秒前
海马成长痛完成签到,获得积分10
29秒前
丘比特应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408