DSBEAN: An innovative framework for intelligent soybean breeding phenotype analysis based on various main stem structures and deep learning methods

表型 工程类 深度学习 人工智能 生物 计算机科学 遗传学 基因
作者
Zhe Zhang,Xiu Jin,Yuan Rao,Tianyu Wan,Xiaobo Wang,Jiajia Li,Hao Chen,Kanglei Wu,Fanchen Kong,Zhuo Tian,Xing Shao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:224: 109135-109135 被引量:4
标识
DOI:10.1016/j.compag.2024.109135
摘要

Although computer vision technology has demonstrated significant efficiency in rapidly identifying soybean phenotypic traits, traditional methods still effective in accurately distinguishing certain complex phenotypes. To further advance the analysis of soybean phenotypic traits, this study proposed the DSBEAN framework that combined soybean breeding technology and deep learning algorithms from a new perspective to analyze soybean phenotypic traits. The key components of DSBEAN framework were two innovative evaluation indicators: the length ratio of the pod growth area to the main stem (MLR) and the pod density within the pod growth area (PD), which were essential for refining understanding and analysis of soybean phenotypic traits in computer vision perspective. The DSBEAN framework consisted of three sections: 1) Main stem Node Detection and PGA Identification. An improved YOLOv5s model was designed for soybean main stem node detection, pod coordinate extraction, and pod growth area (PGA) partition. 2) Main stem Segmentation. The U-Net model was employed for soybean main stem segmentation. 3) MLR and PD Extraction: The previously identified soybean phenotypes were used to calculate the MLR and PD. To validate the DSBEAN framework, a new soybean image and label dataset (SILD) was constructed, and diverse comparison experiments were performed. From the experimental results, the number of pods predicted based on MLR, PD, and the number of main stem nodes reached a correlation level of 0.93, highlighting the significant potential of the DSBEAN framework for soybean phenotype identification. In addition, the proposed framework had the potential to provide new directions for phenotype identification of other crops.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bo完成签到,获得积分20
刚刚
atong完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
香蕉觅云应助真不错采纳,获得10
2秒前
汉堡包应助熙慕采纳,获得10
2秒前
思源应助Aimeee采纳,获得10
2秒前
Mr_Yilu完成签到,获得积分10
3秒前
科研通AI6应助青青小筑采纳,获得10
3秒前
英俊完成签到,获得积分10
3秒前
MJQ发布了新的文献求助10
4秒前
ivar发布了新的文献求助10
5秒前
落寞的新晴完成签到,获得积分20
5秒前
木阳完成签到,获得积分10
5秒前
bocky完成签到 ,获得积分10
5秒前
动听的青曼完成签到,获得积分10
6秒前
朕爱圣女果完成签到,获得积分10
7秒前
上官若男应助bo采纳,获得10
8秒前
虚拟的若完成签到,获得积分10
8秒前
香蕉觅云应助焱鑫采纳,获得10
8秒前
8秒前
8秒前
lancer完成签到,获得积分10
8秒前
Lvhao完成签到,获得积分10
9秒前
10秒前
10秒前
hy完成签到 ,获得积分10
10秒前
皇家咖啡完成签到 ,获得积分10
12秒前
故事细腻发布了新的文献求助10
12秒前
12秒前
好运来发布了新的文献求助10
13秒前
海风发布了新的文献求助10
14秒前
14秒前
华仔应助简单的琦采纳,获得10
14秒前
哈哈哈发布了新的文献求助10
14秒前
喜悦的鬼神完成签到 ,获得积分10
14秒前
15秒前
郜连虎发布了新的文献求助10
15秒前
zhou发布了新的文献求助10
15秒前
sam关注了科研通微信公众号
15秒前
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610911
求助须知:如何正确求助?哪些是违规求助? 4695350
关于积分的说明 14886541
捐赠科研通 4723667
什么是DOI,文献DOI怎么找? 2545322
邀请新用户注册赠送积分活动 1510085
关于科研通互助平台的介绍 1473121