DSBEAN: An innovative framework for intelligent soybean breeding phenotype analysis based on various main stem structures and deep learning methods

表型 工程类 深度学习 人工智能 生物 计算机科学 遗传学 基因
作者
Zhe Zhang,Xiu Jin,Yuan Rao,Tianyu Wan,Xiaobo Wang,Jiajia Li,Hao Chen,Kanglei Wu,Fanchen Kong,Zhuo Tian,Xing Shao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:224: 109135-109135 被引量:4
标识
DOI:10.1016/j.compag.2024.109135
摘要

Although computer vision technology has demonstrated significant efficiency in rapidly identifying soybean phenotypic traits, traditional methods still effective in accurately distinguishing certain complex phenotypes. To further advance the analysis of soybean phenotypic traits, this study proposed the DSBEAN framework that combined soybean breeding technology and deep learning algorithms from a new perspective to analyze soybean phenotypic traits. The key components of DSBEAN framework were two innovative evaluation indicators: the length ratio of the pod growth area to the main stem (MLR) and the pod density within the pod growth area (PD), which were essential for refining understanding and analysis of soybean phenotypic traits in computer vision perspective. The DSBEAN framework consisted of three sections: 1) Main stem Node Detection and PGA Identification. An improved YOLOv5s model was designed for soybean main stem node detection, pod coordinate extraction, and pod growth area (PGA) partition. 2) Main stem Segmentation. The U-Net model was employed for soybean main stem segmentation. 3) MLR and PD Extraction: The previously identified soybean phenotypes were used to calculate the MLR and PD. To validate the DSBEAN framework, a new soybean image and label dataset (SILD) was constructed, and diverse comparison experiments were performed. From the experimental results, the number of pods predicted based on MLR, PD, and the number of main stem nodes reached a correlation level of 0.93, highlighting the significant potential of the DSBEAN framework for soybean phenotype identification. In addition, the proposed framework had the potential to provide new directions for phenotype identification of other crops.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研王发布了新的文献求助10
1秒前
什么什么哇偶完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
kasami发布了新的文献求助10
3秒前
3秒前
深情安青应助GLM采纳,获得10
4秒前
4秒前
华仔应助魔幻安筠采纳,获得10
4秒前
bliss完成签到,获得积分10
4秒前
左丘易梦完成签到,获得积分10
5秒前
5秒前
tang应助虚心的岩采纳,获得10
5秒前
苔原猫咪甜甜圈完成签到,获得积分10
5秒前
尹善冰完成签到,获得积分10
5秒前
aaa完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
大圣来也发布了新的文献求助10
6秒前
在水一方应助11采纳,获得10
7秒前
7秒前
Wind应助愉快小猪采纳,获得10
8秒前
10086发布了新的文献求助10
8秒前
上官若男应助无心的月亮采纳,获得10
9秒前
aaa发布了新的文献求助10
9秒前
9秒前
9秒前
Alan发布了新的文献求助10
9秒前
得意黑发布了新的文献求助10
9秒前
Honghao完成签到,获得积分10
10秒前
stiger应助111采纳,获得50
10秒前
ppat5012发布了新的文献求助10
10秒前
zhangsf88完成签到,获得积分10
10秒前
ioii完成签到,获得积分10
10秒前
情怀应助JansonLin采纳,获得10
10秒前
左丘易梦发布了新的文献求助10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444