亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DSBEAN: An innovative framework for intelligent soybean breeding phenotype analysis based on various main stem structures and deep learning methods

表型 工程类 深度学习 人工智能 生物 计算机科学 遗传学 基因
作者
Zhe Zhang,Xiu Jin,Yuan Rao,Tianyu Wan,Xiaobo Wang,Jiajia Li,Hao Chen,Kanglei Wu,Fanchen Kong,Zhuo Tian,Xing Shao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:224: 109135-109135 被引量:4
标识
DOI:10.1016/j.compag.2024.109135
摘要

Although computer vision technology has demonstrated significant efficiency in rapidly identifying soybean phenotypic traits, traditional methods still effective in accurately distinguishing certain complex phenotypes. To further advance the analysis of soybean phenotypic traits, this study proposed the DSBEAN framework that combined soybean breeding technology and deep learning algorithms from a new perspective to analyze soybean phenotypic traits. The key components of DSBEAN framework were two innovative evaluation indicators: the length ratio of the pod growth area to the main stem (MLR) and the pod density within the pod growth area (PD), which were essential for refining understanding and analysis of soybean phenotypic traits in computer vision perspective. The DSBEAN framework consisted of three sections: 1) Main stem Node Detection and PGA Identification. An improved YOLOv5s model was designed for soybean main stem node detection, pod coordinate extraction, and pod growth area (PGA) partition. 2) Main stem Segmentation. The U-Net model was employed for soybean main stem segmentation. 3) MLR and PD Extraction: The previously identified soybean phenotypes were used to calculate the MLR and PD. To validate the DSBEAN framework, a new soybean image and label dataset (SILD) was constructed, and diverse comparison experiments were performed. From the experimental results, the number of pods predicted based on MLR, PD, and the number of main stem nodes reached a correlation level of 0.93, highlighting the significant potential of the DSBEAN framework for soybean phenotype identification. In addition, the proposed framework had the potential to provide new directions for phenotype identification of other crops.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明芬发布了新的文献求助10
26秒前
ceeray23应助科研通管家采纳,获得10
36秒前
酷酷的紫南完成签到 ,获得积分10
45秒前
50秒前
CapQing完成签到,获得积分10
51秒前
2分钟前
明芬发布了新的文献求助10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
小不点发布了新的文献求助30
2分钟前
3分钟前
小不点完成签到,获得积分20
3分钟前
木木完成签到 ,获得积分10
3分钟前
3分钟前
DduYy完成签到,获得积分10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
冉亦完成签到,获得积分10
4分钟前
5分钟前
犬来八荒发布了新的文献求助20
5分钟前
HYQ完成签到 ,获得积分10
5分钟前
TYM发布了新的文献求助10
5分钟前
科研通AI6应助TYM采纳,获得30
5分钟前
gengen应助犬来八荒采纳,获得10
5分钟前
5分钟前
5分钟前
犬来八荒完成签到,获得积分10
5分钟前
yyy发布了新的文献求助10
5分钟前
5分钟前
小二郎应助yyy采纳,获得10
6分钟前
Only完成签到 ,获得积分10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
betterme完成签到,获得积分10
6分钟前
6分钟前
CRUSADER完成签到,获得积分10
7分钟前
小不点应助明芬采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599818
求助须知:如何正确求助?哪些是违规求助? 4685540
关于积分的说明 14838598
捐赠科研通 4671430
什么是DOI,文献DOI怎么找? 2538288
邀请新用户注册赠送积分活动 1505554
关于科研通互助平台的介绍 1470945