Vision transformer quantization with multi-step knowledge distillation

蒸馏 变压器 量化(信号处理) 计算机科学 人工智能 电气工程 计算机视觉 工程类 化学 色谱法 电压
作者
Navin Ranjan,Andreas Savakis
标识
DOI:10.1117/12.3014158
摘要

Vision Transformers (ViTs) have demonstrated remarkable performance in various visual tasks, but they suffer from expensive computational and memory challenges, which hinder their practical application in the real world. Model quantization methods reduce the model computation and memory requirements through low-bit representations. Knowledge distillation is used to guide the quantized student network to imitate the performance of its full-precision counterpart teacher network. However, for ultra-low bit quantization, the student networks experience a noticeable performance drop. This is primarily due to the limited learning capacity of the smaller network to capture the knowledge of the full-precision teacher, especially when the representation gaps between the student and the teacher networks are significant. In this paper, we introduce a multi-step knowledge distillation approach, utilizing intermediate-quantized networks with varying bit precision. This multi-step knowledge distillation approach enables an ultra-low bit quantized student network to effectively bridge the gap with the teacher network by gradually reducing the model's bit representation. We progressively teach each TA network to learn by distilling the knowledge from higher-bit quantized teacher networks from the previous step. The target student network learns from the combined knowledge of the teacher assistants and the full-precision teacher network, resulting in improved learning capacity even when faced with significant knowledge gaps. We evaluate our methods using the DeiT vision transformer for both ground level and aerial image classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
伶俜完成签到,获得积分10
1秒前
1秒前
1秒前
请勿继续完成签到,获得积分10
2秒前
2秒前
细心寒凡完成签到 ,获得积分10
2秒前
ZH完成签到,获得积分10
3秒前
3秒前
tkdzjr12345发布了新的文献求助10
5秒前
6秒前
无为完成签到 ,获得积分10
6秒前
哈哈哈完成签到,获得积分10
6秒前
wybdsj发布了新的文献求助10
8秒前
Sherwin完成签到,获得积分10
8秒前
顾矜应助萨尔莫斯采纳,获得10
8秒前
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
甲乙丙丁发布了新的文献求助10
9秒前
9秒前
岁月浪翻了完成签到,获得积分10
9秒前
小刷子完成签到 ,获得积分10
9秒前
tianshicanyi发布了新的文献求助10
11秒前
11秒前
科目三应助meng采纳,获得10
11秒前
11111111完成签到,获得积分10
11秒前
biubiu完成签到,获得积分10
11秒前
枍枫发布了新的文献求助10
12秒前
liu完成签到 ,获得积分10
12秒前
没有你不行完成签到,获得积分10
13秒前
临妤发布了新的文献求助10
13秒前
852应助www采纳,获得10
14秒前
Steve发布了新的文献求助10
15秒前
小小牛完成签到,获得积分10
15秒前
叶子完成签到,获得积分10
15秒前
猪猪比特完成签到,获得积分10
16秒前
16秒前
想要赚大钱完成签到,获得积分10
16秒前
俭朴的向薇完成签到,获得积分10
17秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121810
求助须知:如何正确求助?哪些是违规求助? 2772185
关于积分的说明 7711736
捐赠科研通 2427602
什么是DOI,文献DOI怎么找? 1289422
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169