Comprehensive performance comparison among different types of features in data-driven battery state of health estimation

电池(电) 估计 健康状况 国家(计算机科学) 计算机科学 数据挖掘 工程类 可靠性工程 功率(物理) 算法 系统工程 量子力学 物理
作者
Xinhong Feng,Yongzhi Zhang,Rui Xiong,Chun Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:369: 123555-123555 被引量:6
标识
DOI:10.1016/j.apenergy.2024.123555
摘要

Battery state of health (SOH), which informs the maximal available capacity of the battery, is a key indicator of battery aging failure. Accurately estimating battery SOH is a vital function of the battery management system that remains to be addressed. In this study, a physics-informed Gaussian process regression (GPR) model is developed for battery SOH estimation, with the performance being systematically compared with that of different types of features and machine learning (ML) methods. The method performance is validated based on 58,826 cycling data units of 118 cells. Experimental results show that the ML driven by the equivalent circuit model (ECM) features generally estimates more accurate SOH than other types of features under different scenarios. The ECM features-based GPR predicts battery SOH with the errors being less than 1.1% based on 10 to 20 mins' relaxation data. And the high robustness and generalization capability of the methodology are also validated against different ratios of training and test data under unseen conditions. Results also highlight the more effective capability of knowledge transfer between different types of batteries with the ECM features and GPR. This study demonstrates the excellence of ECM features in indicating the state evolution of complex systems, and the improved indication performance of these features by combining a suitable ML method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘慧完成签到 ,获得积分10
刚刚
问你有没有发挥完成签到,获得积分10
1秒前
orixero应助嘁嘁嘁采纳,获得10
1秒前
2秒前
Ying完成签到,获得积分10
3秒前
DreamMaker应助文件撤销了驳回
3秒前
3秒前
3秒前
YFL发布了新的文献求助10
4秒前
顿手把其完成签到,获得积分10
6秒前
为十发布了新的文献求助10
6秒前
6秒前
顺利山柏发布了新的文献求助10
7秒前
冬虫夏草发布了新的文献求助10
8秒前
10秒前
10秒前
13秒前
嘁嘁嘁完成签到,获得积分10
13秒前
科研小白完成签到 ,获得积分10
16秒前
Gavin完成签到,获得积分10
16秒前
16秒前
嘁嘁嘁发布了新的文献求助10
17秒前
思源应助仙女采纳,获得10
18秒前
kiki0808完成签到 ,获得积分10
19秒前
Lio完成签到,获得积分10
20秒前
20秒前
阿龙发布了新的文献求助10
20秒前
20秒前
Dandanhuang发布了新的文献求助10
21秒前
lili发布了新的文献求助10
22秒前
杨子怡完成签到 ,获得积分10
23秒前
为十完成签到,获得积分10
24秒前
Leon Lai完成签到,获得积分0
24秒前
Aries完成签到,获得积分10
25秒前
25秒前
25秒前
金碧河发布了新的文献求助10
26秒前
冷艳馒头完成签到,获得积分10
26秒前
科研丁真完成签到,获得积分10
28秒前
LEE123完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295297
求助须知:如何正确求助?哪些是违规求助? 4444855
关于积分的说明 13834820
捐赠科研通 4329178
什么是DOI,文献DOI怎么找? 2376556
邀请新用户注册赠送积分活动 1371823
关于科研通互助平台的介绍 1337080