Comprehensive performance comparison among different types of features in data-driven battery state of health estimation

电池(电) 估计 健康状况 国家(计算机科学) 计算机科学 数据挖掘 工程类 可靠性工程 功率(物理) 算法 系统工程 物理 量子力学
作者
Xinhong Feng,Yongzhi Zhang,Rui Xiong,Chun Wang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:369: 123555-123555 被引量:6
标识
DOI:10.1016/j.apenergy.2024.123555
摘要

Battery state of health (SOH), which informs the maximal available capacity of the battery, is a key indicator of battery aging failure. Accurately estimating battery SOH is a vital function of the battery management system that remains to be addressed. In this study, a physics-informed Gaussian process regression (GPR) model is developed for battery SOH estimation, with the performance being systematically compared with that of different types of features and machine learning (ML) methods. The method performance is validated based on 58,826 cycling data units of 118 cells. Experimental results show that the ML driven by the equivalent circuit model (ECM) features generally estimates more accurate SOH than other types of features under different scenarios. The ECM features-based GPR predicts battery SOH with the errors being less than 1.1% based on 10 to 20 mins' relaxation data. And the high robustness and generalization capability of the methodology are also validated against different ratios of training and test data under unseen conditions. Results also highlight the more effective capability of knowledge transfer between different types of batteries with the ECM features and GPR. This study demonstrates the excellence of ECM features in indicating the state evolution of complex systems, and the improved indication performance of these features by combining a suitable ML method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
liuziyu完成签到,获得积分10
3秒前
eva完成签到,获得积分20
3秒前
yaaabo完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
机智毛豆完成签到,获得积分10
6秒前
8秒前
全能发文章完成签到,获得积分10
10秒前
迷路小猫崽完成签到,获得积分10
10秒前
huangwenjin发布了新的文献求助10
11秒前
12秒前
陈思雨完成签到,获得积分10
14秒前
上官若男应助蘑菇采纳,获得10
14秒前
15秒前
17秒前
kkkqy完成签到,获得积分10
17秒前
Driscoll发布了新的文献求助10
18秒前
北岸初晴发布了新的文献求助10
18秒前
18秒前
19秒前
我是老大应助CH采纳,获得10
20秒前
Gnahz完成签到,获得积分10
20秒前
白亦冰发布了新的文献求助10
21秒前
内向的太阳完成签到,获得积分10
22秒前
22秒前
23秒前
Mesting完成签到,获得积分10
24秒前
24秒前
爆米花应助Pyrene采纳,获得10
24秒前
25秒前
pcr163应助时光采纳,获得60
25秒前
25秒前
25秒前
orixero应助Shelton采纳,获得30
26秒前
26秒前
26秒前
27秒前
28秒前
Raymone发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954612
求助须知:如何正确求助?哪些是违规求助? 3500783
关于积分的说明 11100882
捐赠科研通 3231219
什么是DOI,文献DOI怎么找? 1786350
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751