Comprehensive performance comparison among different types of features in data-driven battery state of health estimation

电池(电) 估计 健康状况 国家(计算机科学) 计算机科学 数据挖掘 工程类 可靠性工程 功率(物理) 算法 系统工程 物理 量子力学
作者
Xinhong Feng,Yongzhi Zhang,Rui Xiong,Chun Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:369: 123555-123555 被引量:5
标识
DOI:10.1016/j.apenergy.2024.123555
摘要

Battery state of health (SOH), which informs the maximal available capacity of the battery, is a key indicator of battery aging failure. Accurately estimating battery SOH is a vital function of the battery management system that remains to be addressed. In this study, a physics-informed Gaussian process regression (GPR) model is developed for battery SOH estimation, with the performance being systematically compared with that of different types of features and machine learning (ML) methods. The method performance is validated based on 58,826 cycling data units of 118 cells. Experimental results show that the ML driven by the equivalent circuit model (ECM) features generally estimates more accurate SOH than other types of features under different scenarios. The ECM features-based GPR predicts battery SOH with the errors being less than 1.1% based on 10 to 20 mins' relaxation data. And the high robustness and generalization capability of the methodology are also validated against different ratios of training and test data under unseen conditions. Results also highlight the more effective capability of knowledge transfer between different types of batteries with the ECM features and GPR. This study demonstrates the excellence of ECM features in indicating the state evolution of complex systems, and the improved indication performance of these features by combining a suitable ML method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七叶树完成签到,获得积分10
刚刚
刚刚
1秒前
qym发布了新的文献求助10
1秒前
耶耶完成签到,获得积分10
1秒前
wanci应助牙牙采纳,获得10
1秒前
今后应助112233445566采纳,获得10
1秒前
lunyu完成签到,获得积分10
1秒前
2秒前
99完成签到,获得积分10
2秒前
wang发布了新的文献求助10
3秒前
ddsyg126完成签到 ,获得积分10
3秒前
领导范儿应助花渐开采纳,获得10
3秒前
眭超阳完成签到 ,获得积分10
3秒前
852应助旭宝儿采纳,获得10
3秒前
ere完成签到,获得积分10
3秒前
4秒前
钟博士发布了新的文献求助30
4秒前
周宸发布了新的文献求助10
5秒前
哈哈完成签到,获得积分20
5秒前
英姑应助哈贝喵采纳,获得10
6秒前
1111完成签到,获得积分10
6秒前
无花果应助XIAO采纳,获得10
7秒前
tjz完成签到,获得积分10
8秒前
不可以懒懒完成签到,获得积分10
8秒前
苹果听枫完成签到,获得积分10
8秒前
8秒前
李_小_八完成签到,获得积分10
8秒前
搜集达人应助qym采纳,获得10
9秒前
9秒前
茉莉静颖完成签到,获得积分10
9秒前
酷波er应助落寞白曼采纳,获得10
9秒前
小白发布了新的文献求助10
9秒前
迅速的鹤完成签到,获得积分10
10秒前
zz完成签到,获得积分10
10秒前
let发布了新的文献求助10
10秒前
10秒前
10秒前
xiaoGuo应助iiglu采纳,获得100
10秒前
Xiaohu完成签到,获得积分10
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143174
求助须知:如何正确求助?哪些是违规求助? 2794297
关于积分的说明 7810446
捐赠科研通 2450505
什么是DOI,文献DOI怎么找? 1303862
科研通“疑难数据库(出版商)”最低求助积分说明 627081
版权声明 601384