已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A combined model based on POA-VMD secondary decomposition and LSTM for ultra-short-term wind power forecasting

期限(时间) 风力发电 分解 风电预测 功率(物理) 计算机科学 气象学 环境科学 人工智能 电力系统 工程类 电气工程 物理 天文 化学 有机化学 量子力学
作者
Shaomei Yang,Xiangyi Qian
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:16 (3)
标识
DOI:10.1063/5.0205868
摘要

As the application of wind power expands, precise prediction of wind energy becomes essential for the effective plan and reliable functioning in the realm of the power system. Aiming to enhance wind power utilization efficiency and minimize error relating to ultra-short-term wind power forecasting, a novel model grounded in sliding time window, Pelican optimization algorithm-variational mode decomposition (POA-VMD) secondary decomposition, sample entropy calculation, sequence reconstruction, and long short-term memory (LSTM) prediction is introduced in this paper. First, in the training set, the sliding time window technique is employed to identify the optimal parameters for the forecasting algorithm, aiming to closely replicate the actual forecasting performance. Subsequently, the VMD algorithm is enhanced through optimization with the POA. This involves utilizing POA to dynamically ascertain the optimal parameters [k, α] for VMD, allowing for an adaptive decomposition of the raw wind power data sequence and effectively diminishing data noise. After calculating each modal's sample entropy, the modal with the highest sample entropy is further decomposed using POA-VMD. The decomposed sequence is predicted using LSTM to get the final prediction. The experiment ultimately demonstrated that the introduced model markedly improves the accuracy of forecasting. By adding POA-VMD secondary decomposition residuals, the prediction errors, as measured by mean absolute error, root mean square error, and mean absolute percentage error, are decreased by 52.03%, 30.34%, and 39.87%, respectively, and coefficient of determination (R2) is increased by 7.75%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hugo发布了新的文献求助10
刚刚
2秒前
3秒前
不周完成签到,获得积分20
4秒前
徐逊发布了新的文献求助10
5秒前
阿洁发布了新的文献求助10
6秒前
7秒前
汉堡包应助糊糊采纳,获得10
9秒前
hugo完成签到,获得积分20
10秒前
10秒前
12秒前
英姑应助王槿采纳,获得10
12秒前
阿洁完成签到,获得积分10
12秒前
xhj666发布了新的文献求助10
13秒前
14秒前
14秒前
君寻完成签到 ,获得积分10
15秒前
kk发布了新的文献求助10
16秒前
彭于晏应助科研通管家采纳,获得30
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
17秒前
sci发布了新的文献求助10
17秒前
田様应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
木兆完成签到 ,获得积分10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
17秒前
Ava应助神海采纳,获得10
17秒前
17秒前
17秒前
kk发布了新的文献求助10
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396