A combined model based on POA-VMD secondary decomposition and LSTM for ultra-short-term wind power forecasting

期限(时间) 风力发电 分解 风电预测 功率(物理) 计算机科学 气象学 环境科学 人工智能 电力系统 工程类 电气工程 物理 天文 化学 量子力学 有机化学
作者
Shaomei Yang,Xiangyi Qian
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:16 (3)
标识
DOI:10.1063/5.0205868
摘要

As the application of wind power expands, precise prediction of wind energy becomes essential for the effective plan and reliable functioning in the realm of the power system. Aiming to enhance wind power utilization efficiency and minimize error relating to ultra-short-term wind power forecasting, a novel model grounded in sliding time window, Pelican optimization algorithm-variational mode decomposition (POA-VMD) secondary decomposition, sample entropy calculation, sequence reconstruction, and long short-term memory (LSTM) prediction is introduced in this paper. First, in the training set, the sliding time window technique is employed to identify the optimal parameters for the forecasting algorithm, aiming to closely replicate the actual forecasting performance. Subsequently, the VMD algorithm is enhanced through optimization with the POA. This involves utilizing POA to dynamically ascertain the optimal parameters [k, α] for VMD, allowing for an adaptive decomposition of the raw wind power data sequence and effectively diminishing data noise. After calculating each modal's sample entropy, the modal with the highest sample entropy is further decomposed using POA-VMD. The decomposed sequence is predicted using LSTM to get the final prediction. The experiment ultimately demonstrated that the introduced model markedly improves the accuracy of forecasting. By adding POA-VMD secondary decomposition residuals, the prediction errors, as measured by mean absolute error, root mean square error, and mean absolute percentage error, are decreased by 52.03%, 30.34%, and 39.87%, respectively, and coefficient of determination (R2) is increased by 7.75%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸澜完成签到,获得积分10
刚刚
1秒前
科研通AI2S应助沉默采纳,获得20
1秒前
清明完成签到,获得积分10
1秒前
min关闭了min文献求助
1秒前
1秒前
CAOHOU应助killler采纳,获得10
1秒前
汉堡包应助无情魂幽采纳,获得10
2秒前
友好碧发布了新的文献求助10
2秒前
楼宸发布了新的文献求助10
2秒前
2秒前
粗暴的毛豆完成签到,获得积分10
3秒前
泉水发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
夏青荷完成签到,获得积分10
4秒前
4秒前
青阳发布了新的文献求助10
4秒前
辛勤的乌完成签到,获得积分10
5秒前
巴图鲁完成签到,获得积分10
6秒前
李爱国应助天真书南采纳,获得10
6秒前
Peggy发布了新的文献求助30
7秒前
hahaha完成签到,获得积分10
7秒前
7秒前
爱笑音响发布了新的文献求助10
9秒前
庞伟泽发布了新的文献求助10
9秒前
9秒前
大个应助高挑的小蕊采纳,获得10
10秒前
11秒前
海里木完成签到,获得积分10
11秒前
12366666完成签到,获得积分10
11秒前
Mm完成签到,获得积分10
12秒前
mia发布了新的文献求助10
12秒前
13秒前
13秒前
苏翰英完成签到,获得积分20
13秒前
killler完成签到,获得积分10
14秒前
domingo发布了新的文献求助10
15秒前
俏皮的荔枝完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958780
求助须知:如何正确求助?哪些是违规求助? 3504977
关于积分的说明 11121403
捐赠科研通 3236362
什么是DOI,文献DOI怎么找? 1788752
邀请新用户注册赠送积分活动 871360
科研通“疑难数据库(出版商)”最低求助积分说明 802707