Self-Supervised Image Denoising of Third Harmonic Generation Microscopic Images of Human Glioma Tissue by Transformer-Based Blind Spot (TBS) Network

降噪 人工智能 计算机科学 模式识别(心理学) 噪音(视频) 监督学习 深度学习 变压器 特征提取 计算机视觉 人工神经网络 图像(数学) 物理 量子力学 电压
作者
Yuchen Wu,Si-Qi Qiu,Marie Louise Groot,Andy Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4688-4700
标识
DOI:10.1109/jbhi.2024.3405562
摘要

Third harmonic generation (THG) microscopy shows great potential for instant pathology of brain tumor tissue during surgery. However, due to the maximal permitted exposure of laser intensity and inherent noise of the imaging system, the noise level of THG images is relatively high, which affects subsequent feature extraction analysis. Denoising THG images is challenging for modern deep-learning based methods because of the rich morphologies contained and the difficulty in obtaining the noise-free counterparts. To address this, in this work, we propose an unsupervised deep-learning network for denoising of THG images which combines a self-supervised blind spot method and a U-shape Transformer using a dynamic sparse attention mechanism. The experimental results on THG images of human glioma tissue show that our approach exhibits superior denoising performance qualitatively and quantitatively compared with previous methods. Our model achieves an improvement of 2.47-9.50 dB in SNR and 0.37-7.40 dB in CNR, compared to six recent state-of-the-art unsupervised learning models including Neighbor2Neighbor, Blind2Unblind, Self2Self+, ZS-N2N, Noise2Info and SDAP. To achieve an objective evaluation of our model, we also validate our model on public datasets including natural and microscopic images, and our model shows a better denoising performance than several recent unsupervised models such as Neighbor2Neighbor, Blind2Unblind and ZS-N2N. In addition, our model is nearly instant in denoising a THG image, which has the potential for real-time applications of THG microscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知然完成签到,获得积分20
1秒前
zcl完成签到,获得积分20
1秒前
欧阳万仇发布了新的文献求助30
1秒前
2秒前
ruirui完成签到,获得积分10
3秒前
鹏程发布了新的文献求助10
3秒前
HJJHJH发布了新的文献求助10
4秒前
5秒前
元谷雪发布了新的文献求助10
6秒前
7秒前
7秒前
废人一个完成签到,获得积分10
7秒前
123654完成签到,获得积分10
8秒前
雪原白鹿完成签到,获得积分10
9秒前
9秒前
9秒前
Amazing完成签到 ,获得积分10
9秒前
尉迟十八发布了新的文献求助60
10秒前
张小南发布了新的文献求助10
11秒前
J_C_Van完成签到,获得积分10
11秒前
窦房结完成签到 ,获得积分20
11秒前
11秒前
内向井发布了新的文献求助10
12秒前
星辰完成签到,获得积分10
12秒前
12秒前
13秒前
ccc发布了新的文献求助10
13秒前
希望天下0贩的0应助czz采纳,获得10
14秒前
14秒前
lnan发布了新的文献求助10
14秒前
14秒前
东郭雁梅发布了新的文献求助10
15秒前
深情安青应助Aurora采纳,获得10
15秒前
别斑秃了完成签到 ,获得积分10
15秒前
15秒前
wheeler1完成签到,获得积分10
15秒前
打打应助科研通管家采纳,获得10
15秒前
Return应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420