已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Self-Supervised Image Denoising of Third Harmonic Generation Microscopic Images of Human Glioma Tissue by Transformer-Based Blind Spot (TBS) Network

降噪 人工智能 计算机科学 模式识别(心理学) 噪音(视频) 监督学习 深度学习 变压器 特征提取 计算机视觉 人工神经网络 图像(数学) 物理 量子力学 电压
作者
Yuchen Wu,Si-Qi Qiu,Marie Louise Groot,Andy Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4688-4700
标识
DOI:10.1109/jbhi.2024.3405562
摘要

Third harmonic generation (THG) microscopy shows great potential for instant pathology of brain tumor tissue during surgery. However, due to the maximal permitted exposure of laser intensity and inherent noise of the imaging system, the noise level of THG images is relatively high, which affects subsequent feature extraction analysis. Denoising THG images is challenging for modern deep-learning based methods because of the rich morphologies contained and the difficulty in obtaining the noise-free counterparts. To address this, in this work, we propose an unsupervised deep-learning network for denoising of THG images which combines a self-supervised blind spot method and a U-shape Transformer using a dynamic sparse attention mechanism. The experimental results on THG images of human glioma tissue show that our approach exhibits superior denoising performance qualitatively and quantitatively compared with previous methods. Our model achieves an improvement of 2.47-9.50 dB in SNR and 0.37-7.40 dB in CNR, compared to six recent state-of-the-art unsupervised learning models including Neighbor2Neighbor, Blind2Unblind, Self2Self+, ZS-N2N, Noise2Info and SDAP. To achieve an objective evaluation of our model, we also validate our model on public datasets including natural and microscopic images, and our model shows a better denoising performance than several recent unsupervised models such as Neighbor2Neighbor, Blind2Unblind and ZS-N2N. In addition, our model is nearly instant in denoising a THG image, which has the potential for real-time applications of THG microscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助nicelily采纳,获得10
1秒前
英姑应助千里奔袭NG港采纳,获得10
2秒前
yyds完成签到,获得积分10
4秒前
5秒前
失主修塔完成签到,获得积分10
6秒前
Orange应助xiao采纳,获得10
8秒前
Owen应助淡定的定帮采纳,获得10
9秒前
9秒前
刘江涛发布了新的文献求助10
10秒前
hyhyhyhy发布了新的文献求助10
13秒前
共享精神应助风中的眼神采纳,获得10
13秒前
Annie完成签到 ,获得积分10
14秒前
Orange应助沈业桥采纳,获得10
15秒前
思源应助hyhyhyhy采纳,获得10
17秒前
18秒前
爆米花应助淡定的定帮采纳,获得10
19秒前
19秒前
19秒前
min完成签到,获得积分10
23秒前
lalala发布了新的文献求助10
23秒前
23秒前
sherrydeyu发布了新的文献求助10
24秒前
赘婿应助清秀的月亮采纳,获得10
24秒前
25秒前
微风418发布了新的文献求助10
25秒前
CABBAGE发布了新的文献求助10
27秒前
思源应助刘江涛采纳,获得10
28秒前
28秒前
沈业桥发布了新的文献求助10
29秒前
陈西发布了新的文献求助10
30秒前
32秒前
33秒前
xiao发布了新的文献求助10
33秒前
shinn发布了新的文献求助10
35秒前
量子星尘发布了新的文献求助10
35秒前
一碗完成签到,获得积分10
37秒前
时舒发布了新的文献求助30
37秒前
勤恳谷槐发布了新的文献求助10
37秒前
39秒前
shinn发布了新的文献求助10
40秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980465
求助须知:如何正确求助?哪些是违规求助? 3524436
关于积分的说明 11221420
捐赠科研通 3261850
什么是DOI,文献DOI怎么找? 1800921
邀请新用户注册赠送积分活动 879507
科研通“疑难数据库(出版商)”最低求助积分说明 807283