Self-Supervised Image Denoising of Third Harmonic Generation Microscopic Images of Human Glioma Tissue by Transformer-Based Blind Spot (TBS) Network

降噪 人工智能 计算机科学 模式识别(心理学) 噪音(视频) 监督学习 深度学习 变压器 特征提取 计算机视觉 人工神经网络 图像(数学) 物理 量子力学 电压
作者
Yuchen Wu,Si-Qi Qiu,Marie Louise Groot,Andy Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4688-4700
标识
DOI:10.1109/jbhi.2024.3405562
摘要

Third harmonic generation (THG) microscopy shows great potential for instant pathology of brain tumor tissue during surgery. However, due to the maximal permitted exposure of laser intensity and inherent noise of the imaging system, the noise level of THG images is relatively high, which affects subsequent feature extraction analysis. Denoising THG images is challenging for modern deep-learning based methods because of the rich morphologies contained and the difficulty in obtaining the noise-free counterparts. To address this, in this work, we propose an unsupervised deep-learning network for denoising of THG images which combines a self-supervised blind spot method and a U-shape Transformer using a dynamic sparse attention mechanism. The experimental results on THG images of human glioma tissue show that our approach exhibits superior denoising performance qualitatively and quantitatively compared with previous methods. Our model achieves an improvement of 2.47-9.50 dB in SNR and 0.37-7.40 dB in CNR, compared to six recent state-of-the-art unsupervised learning models including Neighbor2Neighbor, Blind2Unblind, Self2Self+, ZS-N2N, Noise2Info and SDAP. To achieve an objective evaluation of our model, we also validate our model on public datasets including natural and microscopic images, and our model shows a better denoising performance than several recent unsupervised models such as Neighbor2Neighbor, Blind2Unblind and ZS-N2N. In addition, our model is nearly instant in denoising a THG image, which has the potential for real-time applications of THG microscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助纯真的盼柳采纳,获得10
刚刚
1秒前
1秒前
2秒前
岁岁平安完成签到,获得积分10
3秒前
3秒前
菲比发布了新的文献求助10
4秒前
4秒前
5秒前
顺利萃发布了新的文献求助10
5秒前
5秒前
5秒前
deardorff完成签到,获得积分10
6秒前
wanying发布了新的文献求助10
6秒前
JiaJiaQing发布了新的文献求助10
6秒前
xyhua925发布了新的文献求助10
6秒前
6秒前
7秒前
IF关闭了IF文献求助
8秒前
9秒前
instant发布了新的文献求助10
9秒前
连一笑发布了新的文献求助10
9秒前
10秒前
10秒前
文静外套发布了新的文献求助10
10秒前
酷波er应助hl采纳,获得30
11秒前
bkagyin应助xyhua925采纳,获得10
11秒前
12秒前
科研通AI6应助deardorff采纳,获得10
13秒前
lllllty发布了新的文献求助10
13秒前
Anthony完成签到,获得积分10
14秒前
JiaJiaQing完成签到,获得积分20
14秒前
迷路雨寒发布了新的文献求助10
14秒前
liuz53完成签到,获得积分10
15秒前
能干的邹完成签到 ,获得积分10
15秒前
今后应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
小张同学发布了新的文献求助10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643332
求助须知:如何正确求助?哪些是违规求助? 4761047
关于积分的说明 15020601
捐赠科研通 4801687
什么是DOI,文献DOI怎么找? 2566980
邀请新用户注册赠送积分活动 1524786
关于科研通互助平台的介绍 1484372