Self-Supervised Image Denoising of Third Harmonic Generation Microscopic Images of Human Glioma Tissue by Transformer-Based Blind Spot (TBS) Network

降噪 人工智能 计算机科学 模式识别(心理学) 噪音(视频) 监督学习 深度学习 变压器 特征提取 计算机视觉 人工神经网络 图像(数学) 物理 量子力学 电压
作者
Yuchen Wu,Si-Qi Qiu,Marie Louise Groot,Andy Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4688-4700
标识
DOI:10.1109/jbhi.2024.3405562
摘要

Third harmonic generation (THG) microscopy shows great potential for instant pathology of brain tumor tissue during surgery. However, due to the maximal permitted exposure of laser intensity and inherent noise of the imaging system, the noise level of THG images is relatively high, which affects subsequent feature extraction analysis. Denoising THG images is challenging for modern deep-learning based methods because of the rich morphologies contained and the difficulty in obtaining the noise-free counterparts. To address this, in this work, we propose an unsupervised deep-learning network for denoising of THG images which combines a self-supervised blind spot method and a U-shape Transformer using a dynamic sparse attention mechanism. The experimental results on THG images of human glioma tissue show that our approach exhibits superior denoising performance qualitatively and quantitatively compared with previous methods. Our model achieves an improvement of 2.47-9.50 dB in SNR and 0.37-7.40 dB in CNR, compared to six recent state-of-the-art unsupervised learning models including Neighbor2Neighbor, Blind2Unblind, Self2Self+, ZS-N2N, Noise2Info and SDAP. To achieve an objective evaluation of our model, we also validate our model on public datasets including natural and microscopic images, and our model shows a better denoising performance than several recent unsupervised models such as Neighbor2Neighbor, Blind2Unblind and ZS-N2N. In addition, our model is nearly instant in denoising a THG image, which has the potential for real-time applications of THG microscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小匀匀21完成签到,获得积分10
刚刚
火星上西牛完成签到,获得积分10
刚刚
汉堡包应助牛奶煮萝莉采纳,获得10
1秒前
帅锅关注了科研通微信公众号
1秒前
1秒前
小王同学完成签到,获得积分10
1秒前
丸子发布了新的文献求助10
1秒前
陆晓亦完成签到,获得积分0
1秒前
今后应助张启帆采纳,获得10
2秒前
SciGPT应助步步采纳,获得10
2秒前
3秒前
3秒前
Thor发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
阳正发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
jing发布了新的文献求助30
5秒前
5秒前
林夕完成签到,获得积分10
5秒前
Esperanza完成签到,获得积分10
5秒前
Lucas应助哈哈哈采纳,获得10
5秒前
5秒前
6秒前
xiao发布了新的文献求助10
6秒前
梦将军发布了新的文献求助10
6秒前
自觉紫安发布了新的文献求助10
6秒前
7秒前
荣荣liu完成签到,获得积分10
7秒前
唯一完成签到,获得积分10
7秒前
小冬猫完成签到 ,获得积分10
7秒前
7秒前
山屿发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
单于新瑶发布了新的文献求助10
8秒前
9秒前
里里发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552270
求助须知:如何正确求助?哪些是违规求助? 4637012
关于积分的说明 14647248
捐赠科研通 4578939
什么是DOI,文献DOI怎么找? 2511174
邀请新用户注册赠送积分活动 1486363
关于科研通互助平台的介绍 1457547