已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Self-Supervised Image Denoising of Third Harmonic Generation Microscopic Images of Human Glioma Tissue by Transformer-Based Blind Spot (TBS) Network

降噪 人工智能 计算机科学 模式识别(心理学) 噪音(视频) 监督学习 深度学习 变压器 特征提取 计算机视觉 人工神经网络 图像(数学) 物理 量子力学 电压
作者
Yuchen Wu,Si-Qi Qiu,Marie Louise Groot,Andy Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4688-4700
标识
DOI:10.1109/jbhi.2024.3405562
摘要

Third harmonic generation (THG) microscopy shows great potential for instant pathology of brain tumor tissue during surgery. However, due to the maximal permitted exposure of laser intensity and inherent noise of the imaging system, the noise level of THG images is relatively high, which affects subsequent feature extraction analysis. Denoising THG images is challenging for modern deep-learning based methods because of the rich morphologies contained and the difficulty in obtaining the noise-free counterparts. To address this, in this work, we propose an unsupervised deep-learning network for denoising of THG images which combines a self-supervised blind spot method and a U-shape Transformer using a dynamic sparse attention mechanism. The experimental results on THG images of human glioma tissue show that our approach exhibits superior denoising performance qualitatively and quantitatively compared with previous methods. Our model achieves an improvement of 2.47-9.50 dB in SNR and 0.37-7.40 dB in CNR, compared to six recent state-of-the-art unsupervised learning models including Neighbor2Neighbor, Blind2Unblind, Self2Self+, ZS-N2N, Noise2Info and SDAP. To achieve an objective evaluation of our model, we also validate our model on public datasets including natural and microscopic images, and our model shows a better denoising performance than several recent unsupervised models such as Neighbor2Neighbor, Blind2Unblind and ZS-N2N. In addition, our model is nearly instant in denoising a THG image, which has the potential for real-time applications of THG microscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牢囧完成签到 ,获得积分10
2秒前
2秒前
隐形曼青应助Drwenlu采纳,获得10
2秒前
顾矜应助Drwenlu采纳,获得10
2秒前
2秒前
ABJ完成签到 ,获得积分10
3秒前
吾日三省吾身完成签到 ,获得积分10
3秒前
研友_VZG7GZ应助斯文明杰采纳,获得10
4秒前
秋天完成签到,获得积分10
4秒前
woleaisa发布了新的文献求助30
5秒前
斯文败类应助cndxh采纳,获得10
5秒前
liu完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
浓浓完成签到 ,获得积分10
10秒前
辽宁科技大学完成签到 ,获得积分10
13秒前
xxfsx应助研友_LMBPXn采纳,获得10
14秒前
17秒前
Thrain完成签到,获得积分10
17秒前
18秒前
18秒前
gxmu6322完成签到,获得积分10
21秒前
21秒前
cndxh发布了新的文献求助10
24秒前
xxfsx应助研友_LMBPXn采纳,获得10
24秒前
斯文明杰发布了新的文献求助10
25秒前
29秒前
Emma完成签到 ,获得积分10
29秒前
30秒前
情怀应助cndxh采纳,获得10
31秒前
Zylan完成签到,获得积分10
32秒前
周周周发布了新的文献求助10
33秒前
吴小燕发布了新的文献求助10
35秒前
隐形大白完成签到,获得积分10
35秒前
没时间解释了完成签到 ,获得积分10
37秒前
youlinn发布了新的文献求助10
37秒前
悠悠完成签到 ,获得积分10
37秒前
sweet完成签到 ,获得积分10
38秒前
研友_VZG7GZ应助科研通管家采纳,获得10
38秒前
英俊的铭应助科研通管家采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482112
求助须知:如何正确求助?哪些是违规求助? 4583088
关于积分的说明 14388421
捐赠科研通 4511951
什么是DOI,文献DOI怎么找? 2472648
邀请新用户注册赠送积分活动 1458905
关于科研通互助平台的介绍 1432309