粒体自噬
缺氧(环境)
细胞生物学
化学
自噬
生物
生物化学
氧气
细胞凋亡
有机化学
作者
Hezlin Marzook,Anamika Gupta,Manju Nidagodu Jayakumar,Mohamed A. Saleh,Dhanendra Tomar,Rizwan Qaisar,Firdos Ahmad
标识
DOI:10.1016/j.freeradbiomed.2024.05.041
摘要
Dysregulated autophagy/mitophagy is one of the major causes of cardiac injury in ischemic conditions. Glycogen synthase kinase-3alpha (GSK-3α) has been shown to play a crucial role in the pathophysiology of cardiac diseases. However, the precise role of GSK-3α in cardiac mitophagy remains unknown. Herein, we investigated the role of GSK-3α in cardiac mitophagy by employing AC16 human cardiomyocytes under the condition of acute hypoxia. We observed that the gain-of-GSK-3α function profoundly induced mitophagy in the AC16 cardiomyocytes post-hypoxia. Moreover, GSK-3α overexpression led to increased ROS generation and mitochondrial dysfunction in cardiomyocytes, accompanied by enhanced mitophagy displayed by increased mt-mKeima intensity under hypoxia. Mechanistically, we identified that GSK-3α promotes mitophagy through upregulation of BNIP3, caused by GSK-3α-mediated increase in expression of HIF-1α and FOXO3a in cardiomyocytes post-hypoxia. Moreover, GSK-3α displayed a physical interaction with BNIP3 and, inhibited PINK1 and Parkin recruitment to mitochondria was observed specifically under hypoxia. Taken together, we identified a novel mechanism of mitophagy in human cardiomyocytes. GSK-3α promotes mitochondrial dysfunction and regulates FOXO3a -mediated BNIP3 overexpression in cardiomyocytes to facilitate mitophagy following hypoxia. An interaction between GSK-3α and BNIP3 suggests a role of GSK-3α in BNIP3 recruitment to the mitochondrial membrane where it enhances mitophagy in stressed cardiomyocytes independent of the PINK1/Parkin.
科研通智能强力驱动
Strongly Powered by AbleSci AI