亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving and Predicting the Surface Roughness and the Machining Accuracy in Ultrasonic Vibration-Assisted Milling

机械加工 表面粗糙度 超声波传感器 振动 表面光洁度 声学 材料科学 机械工程 工程类 复合材料 物理
作者
Mohamed Baraya,Jiwang Yan,Mohab Hossam
出处
期刊:Journal of vibration engineering & technologies [Springer Nature]
被引量:6
标识
DOI:10.1007/s42417-024-01406-z
摘要

Abstract The present research work amis to develop a controlled vibratory system for improving the performance of slotting process based on the vibration-assisted milling technique. In addition, the establishment of a statistical model for predicting the process efficiency was a key aim target. In the current investigation, an ultrasonic vibratory device was designed to provide vibration oscillations in the cutting feed direction to the 7075 aluminum alloy workpiece side at 34.7 kHz frequency and 10 μm amplitude. A LabView code has been developed to control the input vibration parameters. A full factorial design of experiments with 4 factors and 2 levels was conducted. An in-depth statistical analysis is then implemented to study the effect of machining and vibration parameters on the process performance. Then, a statistical model for predicting the process response in terms of cutting force, surface roughness, and machining accuracy has been established. Some experiments showed a significant reduction in cutting force up to 50% in the feed direction. Additionally, an improvement in workpiece surface roughness was recorded. Regarding the machined surface accuracy, introducing ultrasonic vibrations significantly reduces the produced slot width error compared to Conventional Milling (CM). The developed statistical model shows a very well agreement with the experimental results. Therefore, the developed VAM technique is suitable for manufacturing parts that require high geometrical and dimensional accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LioXH发布了新的文献求助10
20秒前
LioXH完成签到 ,获得积分10
35秒前
45秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
chiyudoubao完成签到,获得积分10
1分钟前
1分钟前
2分钟前
情怀应助五香采纳,获得10
2分钟前
五香完成签到,获得积分10
3分钟前
3分钟前
五香发布了新的文献求助10
3分钟前
3分钟前
ll77完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得30
5分钟前
5分钟前
5分钟前
小脚丫完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
7分钟前
帅狗完成签到,获得积分10
7分钟前
帅狗发布了新的文献求助10
7分钟前
打打应助帅狗采纳,获得10
7分钟前
7分钟前
积极废物完成签到 ,获得积分10
7分钟前
玄之又玄完成签到,获得积分10
8分钟前
9分钟前
9分钟前
9分钟前
9分钟前
一二完成签到 ,获得积分10
9分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743751
什么是DOI,文献DOI怎么找? 1505225
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694867